<u>Given:</u>
A triangle ABC where AD = 12 units, AB = 15 units, and AC = 13 units.
<u>To find:</u>
The length of BC.
<u>Solution:</u>
According to the Pythagorean theorem, the square of the hypotenuse will be equal to the sum of the squares of the other two sides.
There are 2 triangles, ACD and ABD in triangle ABC.
In triangle ACD, AC is the hypotenuse.
In triangle ABD, AB is the hypotenuse.
Assume the length of CD is x and the length of DB is y.
For triangle ACD, ![AC^{2} = AD^{2} + CD^{2} .](https://tex.z-dn.net/?f=AC%5E%7B2%7D%20%3D%20AD%5E%7B2%7D%20%2B%20CD%5E%7B2%7D%20.)
![13^{2} = 12^{2} +x^{2} .](https://tex.z-dn.net/?f=13%5E%7B2%7D%20%3D%2012%5E%7B2%7D%20%2Bx%5E%7B2%7D%20.)
![x^{2} = 169-144 = 25.](https://tex.z-dn.net/?f=x%5E%7B2%7D%20%3D%20169-144%20%3D%2025.)
![x = \sqrt{25} = 5.](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%7B25%7D%20%3D%205.)
For triangle ABD, ![AB^{2} = AD^{2} + BD^{2} .](https://tex.z-dn.net/?f=AB%5E%7B2%7D%20%3D%20AD%5E%7B2%7D%20%2B%20BD%5E%7B2%7D%20.)
![15^{2} = 12^{2} +y^{2} .](https://tex.z-dn.net/?f=15%5E%7B2%7D%20%3D%2012%5E%7B2%7D%20%2By%5E%7B2%7D%20.)
![y^{2} = 225-144 = 81.](https://tex.z-dn.net/?f=y%5E%7B2%7D%20%3D%20225-144%20%3D%2081.)
![y = \sqrt{81} = 9.](https://tex.z-dn.net/?f=y%20%3D%20%5Csqrt%7B81%7D%20%3D%209.)
units.
So BC is option C. 14 units long.