We know that
3 2/4 -------------> is (3*4+2)/4--------> 14/4-------> 7/2
2 2/3 --------------> is (2*3+2)/3--------> 8/3
if a new washing machine used 7/2 gallons of water ------------> one full load <span>cloths
</span> X gallons of water------------------------------------------------------> 8/3 of load cloths<span>
X=(8/3)*(7/2)---------> X=56/6------->28/3 gallons of water
28/3--------> 9 1/3 gallons of water
the answer is
</span>9 1/3 gallons of water
Area of the parabolic region = Integral of [a^2 - x^2 ]dx | from - a to a =
(a^2)x - (x^3)/3 | from - a to a = (a^2)(a) - (a^3)/3 - (a^2)(-a) + (-a^3)/3 =
= 2a^3 - 2(a^3)/3 = [4/3](a^3)
Area of the triangle = [1/2]base*height = [1/2](2a)(a)^2 = <span>a^3
ratio area of the triangle / area of the parabolic region = a^3 / {[4/3](a^3)} =
Limit of </span><span><span>a^3 / {[4/3](a^3)} </span>as a -> 0 = 1 /(4/3) = 4/3
</span>
Answer:
There were 6 benches in park 1 and 18 benches in park 2.
Step-by-step explanation:
Let x be the no of benches in Park 1 and y in park 2.
Given that there are 12 more benches in park 2 than 1
Writing this in equation form, we have y = x+12 ... i
Next is if 2 benches were transferred from park 2 to park 1, then we have
x+2 in park 1 and y-2 in park 2.
Given that y-2 = twice that of x+2
Or y-2 = 2x+4 ... ii
Rewrite by adding 2 to both sides of equation ii.
y = 2x+6 ... iii
i-iii gives 0 = -x+6
Or x =6
Substitute in i, to have y = 6+12 = 18
Verify:
Original benches 6 and 18.
18 = 6+12 hence I condition is satisfied
18-2 = 2(6+2)
II is also satisfied.