Answer:
cotangent squared theta minus cosecant squared theta = negative 1.
Step-by-step explanation:
According to Pythagorean theorem, the trigonometric function below is true
Sin²theta + cos²theta = 1 ... (1)
From the equation, if we move cos²theta to the other side, it will become;
Sin²theta = 1-cos²theta
Dividing equation 1 through by cos²theta we will have;
sin²theta/cos²theta + cos²theta/cos²theta = 1/cos²theta
Since sintheta/costheta = tantheta
1/costheta = sec²theta
The equation becomes;
tan²theta + 1 = sec²theta... (2)
Similarly, dividing equation 1 through by sin²theta we will have;
1 + cot²theta = cosec²theta ... (3)
From equation 3, if we move cosec²theta first, we will have;
1 + cot²theta - cosec²theta = 0
Then we move 1 to finally have;
cot²theta - cosec²theta = -1
This shows that only option 4 is true