Answer:
independent, 1/4
Step-by-step explanation:
The events are independent because what occurs on the first flip does not affect the second flip
P(heads) = 1/2
P(heads, heads) = 1/2*1/2 = 1/4
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Functions
- Function Notation
<u>Calculus</u>
Derivatives
Derivative Notation
Derivative Rule [Quotient Rule]: ![\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
MacLaurin/Taylor Polynomials
- Approximating Transcendental and Elementary functions
- MacLaurin Polynomial:

- Taylor Polynomial:

Step-by-step explanation:
*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.
<u />
<u>Step 1: Define</u>
<em>Identify</em>
f(x) = ln(1 - x)
Center: x = 0
<em>n</em> = 3
<u>Step 2: Differentiate</u>
- [Function] 1st Derivative:

- [Function] 2nd Derivative:

- [Function] 3rd Derivative:

<u>Step 3: Evaluate Functions</u>
- Substitute in center <em>x</em> [Function]:

- Simplify:

- Substitute in center <em>x</em> [1st Derivative]:

- Simplify:

- Substitute in center <em>x</em> [2nd Derivative]:

- Simplify:

- Substitute in center <em>x</em> [3rd Derivative]:

- Simplify:

<u>Step 4: Write Taylor Polynomial</u>
- Substitute in derivative function values [MacLaurin Polynomial]:

- Simplify:

Topic: AP Calculus BC (Calculus I/II)
Unit: Taylor Polynomials and Approximations
Book: College Calculus 10e
The length of the copper in meters is 1.6 times 10^-2 meters.
According to the given question.
The length of a copper is 1.6 centimeters.
As we all know that
1 meter = 100 centimeter
⇒ 1 centimeter = 1/100 meters or 10^-2 meters
So, to find the length of the copper wire in meters. We have to convert 1.6 centimeters to meters.
Therefore,
The length of the copper wire in meters
= 1.6/100 meters
= 1.6 × 10^-2
= 1.6 times 10^-2 meters
Hence, the length of the copper in meters is 1.6 times 10^-2 meters.
Find out more information about centimeters and meters here:
brainly.com/question/9484490
#SPJ4