1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dangina [55]
3 years ago
6

Help

Mathematics
1 answer:
aniked [119]3 years ago
5 0

Answer:

39.3%

Step-by-step explanation:

You might be interested in
6) You flip a coin twice. The first flip lands
slavikrds [6]

Answer:

independent, 1/4

Step-by-step explanation:

The events are independent because what occurs on the first flip does not affect the second flip

P(heads) = 1/2

P(heads, heads) = 1/2*1/2 = 1/4

8 0
3 years ago
Which statement is correct about the system of linear equations graphed below?
Troyanec [42]

Answer:

2

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
The length of a copper wire is 1.6 centimeters (cm). what is the length of this wire in meters (m)? 1.6 times. 10–3 m 1.6 times.
LUCKY_DIMON [66]

The length of the copper in meters is 1.6 times 10^-2 meters.

According to the given question.

The length of a copper is 1.6 centimeters.

As we all know that

1 meter = 100 centimeter

⇒ 1 centimeter = 1/100 meters or 10^-2 meters

So, to find the length of the copper wire in meters. We have to convert 1.6 centimeters to meters.

Therefore,

The length of the copper wire in meters

= 1.6/100 meters

= 1.6 × 10^-2

= 1.6 times 10^-2 meters

Hence, the length of the copper in meters is 1.6 times 10^-2 meters.

Find out more information about centimeters and meters here:

brainly.com/question/9484490

#SPJ4

8 0
1 year ago
A group of preschoolers has 13 boys and 16 girls. What is the ratio to all children
navik [9.2K]
The ratio is 13+16:29
6 0
3 years ago
Other questions:
  • Please help and EXPLAIN
    7·1 answer
  • Let x and y be random variables of the continuous type having the joint p.d.f. f(x,y)=8xy
    13·1 answer
  • In the function y=5x^2-2, what effect does the number 5 have on the graph, as compared to the graph of y=x^2?
    10·2 answers
  • Which is a true statement about any two congruent chords in a circle? A.They are parallel. B.They are perpendicular. C.They form
    8·2 answers
  • Can You Please Help Me ​
    12·2 answers
  • Scale factor for a model is 15cm. Actual =55.5m. model. =25.25. What is the meter
    12·1 answer
  • Find the volume of the cone. Leave your answers in therms of pi.
    9·1 answer
  • Kim earns $30 for babysitting on Friday nights. She makes an average of $1.25 in tips per hour. Write the function of Kim's earn
    7·1 answer
  • 1 quarter 2 dimes 3 pennies how munch I have
    11·1 answer
  • If a tank is losing water at a unit rate of 8/1 (gallons/hours), how many
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!