1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KIM [24]
4 years ago
14

Which of the following statements are true? Select all that apply

Mathematics
1 answer:
Murrr4er [49]4 years ago
4 0
A,C,D is as an answer
You might be interested in
The probability of A is 1/6 and the probability of B is 1/2. what is the probability of A or B or both happening?​
Damm [24]

Answer:

p(a \: or \: b) = p(a) + p(b) - p(a \: and \: b) \\ p(a \: and \: b) = p(a)p(b)

Write the above equation in capital in your case, all you need to do is plug in your fractions...

5 0
3 years ago
Which of the following functions are solutions of the differential equation y'' + y = 3 sin x? (select all that apply)
DiKsa [7]

Answer:

C

Step-by-step explanation:

We must compute the derivatives and check if the equation is satisfied.

A. y'=(3\sin x)'=3\cos x. Differentiate again to get y''=(3\cos x)'=-3\sin x, then y''+y=-3\sin x+3\sin x=0\neq 3\sin x so this choice of y doesn't solve the equation.

B. y'=3\sin x+3x\cos x-5\cosx +5x\sin x=(5x+3)\sin x+(3x-5)\cos x and y''=5\sin x+(5x+3)\cos x+3\cos x-(3x-5)\sin x=(10-3x)\sin x+(5x+6)\cos x, then y''+y=10\sin x+6\cos x\neq 3\sin x so y is not a solution

C. y'=\frac{-3}{2}\cos x+\frac{3}{2}x\sin x hence y''=\frac{3}{2}\sin x+\frac{3}{2}\sin x+\frac{3}{2}x\cos x=3\sin x+\frac{3}{2}x\cos x. Then y''+y=3\sin x+\frac{3}{2}x\cos x-\frac{3}{2}x\cos x=3\sin x so y is a solution.

D.y'=-3\sin x and y''=-3\cos x, then y''+y=0 thus y isn't a solution

E. y'=\frac{3}{2}\sin x+\frac{3}{2}x\cos x hence y''=\frac{3}{2}\cos x+\frac{3}{2}\cos x-\frac{3}{2}x\sin x=3\cos x-\frac{3}{2}x\cos x. Then y''+y=3\cos x-\frac{3}{2}x\cos x-\frac{3}{2}x\cos x=3\cos x\neq 3\sin x then y is not a solution.

3 0
3 years ago
What is the roots of f(x)=-x^2-6x-14
Nutka1998 [239]

Answer:

x=-3\pm i \sqrt{5}

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Order of Operations: BPEMDAS
  • Equality Properties

<u>Algebra I</u>

  • Standard Form: ax² + bx + c = 0
  • Quadratic Formula: x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}

<u>Algebra II</u>

  • Imaginary roots: √-1 = i

Step-by-step explanation:

<u>Step 1: Define function</u>

f(x) = -x² - 6x - 14

<u>Step 2: Set up</u>

  1. Set equation equal to 0:                    -x² - 6x - 14 = 0
  2. Factor out -1:                                       -(x² + 6x + 14) = 0
  3. Divide both sides by -1:                      x² + 6x + 14 = 0

<u>Step 3: Define variables</u>

a = 1

b = 6

c = 14

<u>Step 4: Find roots</u>

  1. Substitute:                              x=\frac{-6\pm\sqrt{6^2-4(1)(14)} }{2(1)}
  2. Exponents:                             x=\frac{-6\pm\sqrt{36-4(1)(14)} }{2(1)}
  3. Multiply:                                  x=\frac{-6\pm\sqrt{36-56} }{2}
  4. Subtract:                                 x=\frac{-6\pm\sqrt{-20} }{2}
  5. Factor:                                    x=\frac{-6\pm\sqrt{-1} \sqrt{20} }{2}
  6. Simplify:                                  x=\frac{-6\pm2i \sqrt{5} }{2}
  7. Factor:                                    x=\frac{2(-3\pm i \sqrt{5} )}{2}
  8. Divide:                                    x=-3\pm i \sqrt{5}
8 0
3 years ago
Really need this badly​
Otrada [13]

Answer:

You need to find the surface area.

5 0
3 years ago
Find the area of a triangle with base 13 inches and height 2 inches.
myrzilka [38]

Answer:

A = 13

Step-by-step explanation:

To find the area of a triangle, multiply the base by the height, and then divide by 2.

13 x 2 = 26

26 / 2 = 13

3 0
4 years ago
Read 2 more answers
Other questions:
  • .09 + 3.706 + 54.23 +.1637 = ?<br> 0 54.8543<br> 58.1897<br> 0 58.2327<br> 60.2502<br> 60.506
    6·2 answers
  • EXPERTS/ACE ONLY!! Ill mark as brainlist!!
    15·1 answer
  • What are the domain and range of this function y=(x+3)^2 -5
    14·2 answers
  • What is the formula for this problem?
    7·2 answers
  • In 2005 a house was purchased for $280,000 and
    14·2 answers
  • Three potential employees took an aptitude test. Each person took a different version of the test. The scores are reported below
    12·1 answer
  • In a right triangle, sin(40 - 2) = cos(32)'. What is the value of x?
    10·1 answer
  • What is a solution to x ≥ 20
    8·1 answer
  • HELP I NEED HELP ASAP
    10·1 answer
  • Find the value of x and round to the nearest tenth
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!