<h3><u>Answer;</u></h3>
A) HNO3 and NO3^-
<h3><u>Explanation;</u></h3>
- <em><u>HNO3 is a strong acid and NO3 is its conjugate base, meaning it will not have any tendency to withdraw H+ from solution.</u></em>
- Buffers are often prepared by mixing a weak acid or base with a salt of that weak acid or base.
- The buffers resist changes in pH since they contain acids to neutralize OH- and a base to neutralize H+. Acid and base can not consume each other in neutralization reaction.
Answer:
3.58J/g°C is the specific heat of the metal
Explanation:
The specific heat of a material is defined as the energy that 1g of the material absorbs and produce the increasing in temperature in 1°C. The equation is:
Q = S*ΔT*m
<em>Where Q is energy = 1362J</em>
<em>S is specific heat of the material</em>
<em>ΔT is change in temperature = 42°C - 17°C = 25°C</em>
<em>And m is the mass of the material = 15.2g</em>
Replacing:
S = Q / ΔT*m
S = 1362J / 25°C*15.2g
<h3>3.58J/g°C is the specific heat of the metal</h3>
Answer:
6.25×10⁻⁶ g / cm³
Explanation:
Density is the relation between mass and volume as this formula shows.
Density of a compound = Mass of the compound / Volume of compound
In the values, we were given:
0.0124 kg / 1983 mm³ = 6.25×10⁻⁶ kg/mm³
This number means that in a volume of 1 mm³ of compound, the mass of it occupies 6.25×10⁻⁶ kg. Let's make a rule of three:
1 cm³ = 1×10⁻³ mm³
In 1 mm³ we have 6.25×10⁻⁶ kg of compound
So in 1×10⁻³ mm³ we would have (1×10⁻³ mm³ . 6.25×10⁻⁶ kg) / 1 mm³ =
6.25×10⁻⁹ kg
Now let's convert the kg to g.
1 kg = 1000 g
6.25×10⁻⁹ kg . 1000 = 6.25×10⁻⁶ g
Finally density is : 6.25×10⁻⁶ g / cm³