<u>Given</u>:
Given that the radius of the circle is 12 cm.
The length of the rectangle is 11 cm.
The width of the rectangle is 5 cm.
We need to determine the area of the shaded region.
<u>Area of the rectangle:</u>
The area of the rectangle can be determined using the formula,
![A_1=length \times width](https://tex.z-dn.net/?f=A_1%3Dlength%20%5Ctimes%20width)
Substituting the values, we have;
![A_1=11\times 5](https://tex.z-dn.net/?f=A_1%3D11%5Ctimes%205)
![A_1=55 \ cm^2](https://tex.z-dn.net/?f=A_1%3D55%20%5C%20cm%5E2)
Thus, the area of the rectangle is 55 square cm.
<u>Area of the circle:</u>
The area of the circle can be determined using the formula,
![A_2=\pi r^2](https://tex.z-dn.net/?f=A_2%3D%5Cpi%20r%5E2)
Substituting r = 12, we have;
![A_2= (3.14)(12)^2](https://tex.z-dn.net/?f=A_2%3D%20%283.14%29%2812%29%5E2)
![A_2=452.16 \ cm^2](https://tex.z-dn.net/?f=A_2%3D452.16%20%5C%20cm%5E2)
Thus, the area of the circle is 452.16 square cm.
<u>Area of the shaded region:</u>
The area of the shaded region can be determined by subtracting the area of the rectangle from the area of the circle.
Thus, we have;
Area = Area of the circle - Area of the rectangle.
Substituting the values, we have;
![Area=452.16-55](https://tex.z-dn.net/?f=Area%3D452.16-55)
![Area=397.16 \ cm^2](https://tex.z-dn.net/?f=Area%3D397.16%20%5C%20cm%5E2)
Thus, the area of the shaded region is 397.16 square cm.