Answer:
1) sound is encoded on a digital recording as an electrical signal.
2) the digital recording plays the sound as an electrical signal.
3) the electric signal moves through a voice coil
4) The voice coil produces a magnetic field.
5) changing the magnetic field pushes and pulls on the diaphragm.
Plant produces glucose in the chloroplast through the process of photosynthesis. Calvin cycle is basically the biological process through which glucose is produced. The steps involved are as follows:
1. Absorbed CO2 is added to RuBP and 6C sugar is formed.
2. Breaking of 6C sugar into two 3-phosphoglycerate molecules
3. ATP gives phosphate group to form 3-phosphoglycerate which is later on converted into 1,3-biphosphoglycerate.
4. Electons are required by 1,3-biphosphoglycerate to an aldehyde called glyceraldehyde-3-phosphate or G3P and these electrons are donated by NADPH
5. Enzyme aldolase uses two molecules of G3P to produce 6 C sugar called fructose-1,6-biphosphate which is further converted to fructose-6-phosphate
6. Enzyme isomerase converts fructose-6-phosphate to glucose-1-phosphate
En las sinapsis eléctricas la información se transmite a través de corrientes locales, mientras que en las sinapsis químicas se transmite mediante neurotransmisores. ... Las sinapsis eléctricas son simétricas, mientras que las químicas son asimétricas.
Explanation:
Now that we’ve learned how autotrophs like plants convert sunlight to sugars, let’s take a look at how all eukaryotes—which includes humans!—make use of those sugars.
In the process of photosynthesis, plants and other photosynthetic producers create glucose, which stores energy in its chemical bonds. Then, both plants and consumers, such as animals, undergo a series of metabolic pathways—collectively called cellular respiration. Cellular respiration extracts the energy from the bonds in glucose and converts it into a form that all living things can use.