Answer:
0.003060 cm³
Explanation:
Mass of water = m = 326.75 gram
Density of water = ρ = 1.00 g/mL = 1 g/cm³
density = mass / volume
⇒volume = density / mass
⇒volume = 1 / 326.75
⇒Volume = 0.0030604 cm³
∴ Volume held by beaker = 0.0030604 cm³
Here the combined mass of the beaker and water is given so the volume found will be of the beaker as well as the liquid. But, it can be seen that the volume is so small that subtracting the beaker mass would have negligible effect.
Answer:
1. 11 A
2. 240 V
3. 8 Ω
4. 60 C
5. 14400 C
Explanation:
1. Determination of the current.
Voltage (V) = 110 V
Resistance (R) = 10 Ω
Current (I) =?
V = IR
110 = I × 10
Divide both side by 10
I = 110 / 10
I = 11 A
2. Determination of the voltage
Current (I) = 3 A
Resistance (R) = 80 Ω
Voltage (V) =?
V = IR
V = 3 × 80
V = 240 V
3. Determination of the resistance.
Current (I) = 0.5 A
Voltage (V) = 4 V
Resistance (R) =?
V = IR
4 = 0.5 × R
Divide both side by 0.5
R = 4 / 0.5
R = 8 Ω
4. Determination of the charge
Current (I) = 2 A
Time (t) = 30 s
Charge (Q) =?
Q = it
Q = 2 × 30
Q = 60 C
5. Determination of the charge.
We'll begin by converting 20 mins to seconds. This can be obtained as follow:
1 min = 60 s
Therefore,
20 mins = 20 × 60
20 mins = 1200 s
Finally, we shall determine the charge as follow:
Current (I) = 12 A
Time (t) = 1200 s
Charge (Q) =?
Q = it
Q = 12 × 1200
Q = 14400 C
The answer is positive thoughts
The answer is a bc electric is fast