1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
8090 [49]
3 years ago
13

Please try answer the question I put an image in.

Mathematics
2 answers:
liraira [26]3 years ago
8 0

Answer:

An isosceles triangle

Step-by-step explanation:

After solving for all the angles In the Triangle ABC,

Angle B = 80

Angle C = 50

Angle A = 50

An isosceles triangle is a triangle that the base angles are equal.

In the image the triangle has two equal angles.

just olya [345]3 years ago
5 0

Answer:

ISCOCELES TRIANGLE

Step-by-step explanation:

<BAC is alternate to <ACD and <ABC is alternate to <BCE

So, <BAC = <ACD = 50° and <BCE = <ABC = 80°

<ACD + <ACB +<BCE =180 (sum of angles in a straight line)

50° + <ACB + 80 = 180

<ACB = 180-(80+50)

<ACB = 180 - 130 = 50°

You can see that the base angles <BAC and <ACB are equal(<BAC =50° and <ACB = 50°), so the triangle is an Iscoceles triangle.

You might be interested in
the regular price of a t-shirt is $9.99. It is on sale for 15% off. sale tax is 6%. if u give the cashier a $10 bill,how much ch
rewona [7]
You would get back $1

$9.99-$1.50= $8.49 <--- 15% off

$8.49x.06= .51 cents <--- Taxes

$8.49+.51<--cents= $9 <--- Total cost of the T-shirt 
4 0
3 years ago
Janet wanted to determine her average phone call length over 90 days. She collected the phone bills and randomly picked ten entr
muminat

oops sorry wrong question. sorry if I confused anyone :(

3 0
2 years ago
<img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%281-x%5E%7B2%7D%20%29%5E%7B3%2F2%7D%20%7D%20%5C%2C%20dx" id="TexFo
Ludmilka [50]

Answer:\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Trigonometric Identities

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                    \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:                                                                                               \displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution (trigonometric substitution).</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle x = sin(u)
  2. [<em>u</em>] Differentiate [Trigonometric Differentiation]:                                         \displaystyle dx = cos(u) \ du
  3. Rewrite <em>u</em>:                                                                                                       \displaystyle u = arcsin(x)

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Trigonometric Substitution:                                                           \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du
  2. [Integrand] Rewrite:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du
  3. [Integrand] Simplify:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b
  5. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:                                                                          \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:                                                                     \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  9. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b
  10. Back-Substitute:                                                                                               \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  12. Rewrite:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
2 years ago
Read 2 more answers
There are 10 marbles. What is the probability of drawing two yellow marbles if the first one is not placed back into the bag bef
RideAnS [48]

Answer: 1/10

Step-by-step explanation:

There is  1 yellow marble out of the 10 marbles

7 0
3 years ago
MARKING BRINLEST RIGHT NOWW HURRYY
natima [27]

Answer:

$275

Step-by-step explanation:

So she put $60 into savings....

X is the amount of her paycheck...

after buying the clothes she had X-75

She spend (2/5)(x-75)  on books

The amount deposited into saving and spent on groceries totals 120.

So

X = 75 + (2/5)(x-75) + 120

X = (2/5)(X-75) + 195

X = (2/5)X - 30 + 195

X = (2/5)X + 165

(3/5)X = 165

X = 165*5/3 = 5*55 = 275

Starts with 275

spent 75 on clothes, which makes it 200.

2/5 of 200 is 80, which makes it 120.

60 deposited into savings and 60 on groceries

Her paycheck was 275

6 0
3 years ago
Other questions:
  • 1) Grant has 4 pairs of shorts (blue, white, khaki, and black) and 3 shirts (red, orange, and green). a) Draw a tree diagram to
    9·1 answer
  • Order these numbers from least to greatest.<br> 8.506, 8.6, 8.5612, 8.56
    6·1 answer
  • How do I solve for x?<br><br>​
    9·1 answer
  • Help PLEASE im stucckkkk!!!
    9·1 answer
  • Please help me fast!
    13·1 answer
  • PLSSS HELP Simplify.<br><br> –2 + (–9)
    5·2 answers
  • Please help me ASAP with part A and B
    7·1 answer
  • A. It shows the unit rate of the graph in hours per mile
    8·2 answers
  • HELPPPPPPPPPPPPPPPPPPPP PLSSSS
    11·1 answer
  • José vende dos bicicletas, cada una a 198 soles. Si en una ganó el 10% y en la otra perdió el 10%. ¿Cuanto ganó o perdió pir la
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!