Its greater than 1,050 tens.
Answer: x = 25%
Step-by-step explanation: 45% + 30% = 75%
75% + 25% = 100%
Answer:
With the given margin of error its is possible that candidate A wins and candidate B loses, and it is also possible that candidate B wins and candidate A loses. Therefore, the poll cannot predict the winner and this is why race was too close to call a winner.
Step-by-step explanation:
A group conducted a poll of 2083 likely voters.
The results of poll indicate candidate A would receive 47% of the popular vote and and candidate B would receive 44% of the popular vote.
The margin of error was reported to be 3%
So we are given two proportions;
A = 47%
B = 44%
Margin of Error = 3%
The margin of error shows by how many percentage points the results can deviate from the real proportion.
Case I:
A = 47% + 3% = 50%
B = 44% - 3% = 41%
Candidate A wins
Case II:
A = 47% - 3% = 44%
B = 44% + 3% = 47%
Candidate B wins
As you can see, with the given margin of error its is possible that candidate A wins and candidate B loses, and it is also possible that candidate B wins and candidate A loses. Therefore, the poll cannot predict the winner and this is why race was too close to call a winner.
150, 155, 163, 168, 172, 177, 186, 190, 205
Answer:
x = 144
Step-by-step explanation:
What you need to remember about this geometry is that all of the triangles are similar. As with any similar triangles, that means ratios of corresponding sides are proportional. Here, we can write the ratios of the long leg to the short leg and set them equal to find x.
x/60 = 60/25
Multiply by 60 to find x:
x = (60·60)/25
x = 144
_____
<em>Comment on this geometry</em>
You may have noticed that the above equation can be written in the form ...
60 = √(25x)
That is, the altitude from the hypotenuse (60) is equal to the geometric mean of the lengths into which it divides the hypotenuse (25 and x).
This same sort of "geometric mean" relation holds for other parts of this geometry, as well. The short leg of the largest triangle (the hypotenuse of the one with legs 25 and 60) is the geometric mean of the short hypotenuse segment (25) and the total hypotenuse (25+x).
And, the long leg of the large triangle (the hypotenuse of the one with legs 60 and x) is the geometric mean of the long hypotenuse segment (x) and the total hypotenuse (25+x).
While it can be a shortcut in some problems to remember these geometric mean relationships, you can always come up with what you need by simply remembering that the triangles are all similar.