
when dividing exponents, subtract the exponents.
ex.
Answer:
The Value of a could be anything, as a represents a variable.
10y + 7 + 3(3y + 7) = 180
10y + 7 + 9y + 21 = 180
19y + 28 = 180
19y = 180 - 28
19y = 152
y = 152/19
y = 8
Plug back into Q and S.
Q = 10y + 7
Q = 10(8) + 7
Q = 80 + 7
Q = 87
S = 3(3y + 7)
S = 9y + 21
S = 9(8) + 21
S = 72 + 21
S = 93
Without solving for x to find the other angles, we can easily see that the answer is choice C.
Answer:
P = 61°
Q = 87°
R = 119°
S = 93°
Done!
Let's use Gaussian elimination. Consider the augmented matrix,
![\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & 0 & 0\\-1 & 2 & 3 & 0 & 1 & 0\\1 & 1 & 4 & 0 & 0 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%20-1%20%26%20-1%20%26%201%20%26%200%20%26%200%5C%5C-1%20%26%202%20%26%203%20%26%200%20%26%201%20%26%200%5C%5C1%20%26%201%20%26%204%20%26%200%20%26%200%20%26%201%5Cend%7Barray%7D%5Cright%5D)
• Add row 1 to row 2, and add -1 (row 1) to row 3:
![\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & 0 & 0\\0 & 1 & 2 & 1 & 1 & 0\\0 & 2 & 5 & -1 & 0 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%20-1%20%26%20-1%20%26%201%20%26%200%20%26%200%5C%5C0%20%26%201%20%26%202%20%26%201%20%26%201%20%26%200%5C%5C0%20%26%202%20%26%205%20%26%20-1%20%26%200%20%26%201%5Cend%7Barray%7D%5Cright%5D)
• Add -2 (row 2) to row 3:
![\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & 0 & 0\\0 & 1 & 2 & 1 & 1 & 0\\0 & 0 & 1 & -3 & -2 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%20-1%20%26%20-1%20%26%201%20%26%200%20%26%200%5C%5C0%20%26%201%20%26%202%20%26%201%20%26%201%20%26%200%5C%5C0%20%26%200%20%26%201%20%26%20-3%20%26%20-2%20%26%201%5Cend%7Barray%7D%5Cright%5D)
• Add -2 (row 3) to row 2:
![\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & 0 & 0\\0 & 1 & 0 & 7 & 5 & -2\\0 & 0 & 1 & -3 & -2 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%20-1%20%26%20-1%20%26%201%20%26%200%20%26%200%5C%5C0%20%26%201%20%26%200%20%26%207%20%26%205%20%26%20-2%5C%5C0%20%26%200%20%26%201%20%26%20-3%20%26%20-2%20%26%201%5Cend%7Barray%7D%5Cright%5D)
• Add row 2 and row 3 to row 1:
![\left[\begin{array}{ccc|ccc}1 & 0 & 0 & 5 & 3 & -1\\0 & 1 & 0 & 7 & 5 & -2\\0 & 0 & 1 & -3 & -2 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%200%20%26%200%20%26%205%20%26%203%20%26%20-1%5C%5C0%20%26%201%20%26%200%20%26%207%20%26%205%20%26%20-2%5C%5C0%20%26%200%20%26%201%20%26%20-3%20%26%20-2%20%26%201%5Cend%7Barray%7D%5Cright%5D)
So the inverse is
