The third term of the geometric progression will be 1 / 27 with common ratio 2 / 3.
We are given that:
2nd term of geometric progression = 1 / 18
5th term = 4 / 243
Now, we can also write it as:
2nd term = a r ( where r is the common ratio and a is the initial term.)
a r = 1 / 18
5th term = a r⁴
a r⁴ = 4 / 243
Now divide 5th term by 2nd term, we get that:
a r⁴ / a r = ( 4 / 243 ) / ( 1 / 18 )
r³ = 72 / 243
r³ = 8 / 27
r = ∛ (8 / 27)
r = 2 / 3
3rd term = a r²
a r² = a r × r
= 1 / 18 × 2 / 3
3rd term = 1 / 27
Therefore, the third term of the geometric progression will be 1 / 27 with common ratio 2 / 3.
Learn more about geometric progression here:
brainly.com/question/24643676
#SPJ4
Your question was incomplete. Please refer the content below:
The 2nd and 5th term of a GP are 1/18 and 4/243 respectively find the 3rd term
Unfortunately, we are not presented in this item with the table in which we could have chosen from our answer to this question. However, it can be concluded that the table which contains the values of
d = p - 2.5
A. Centrifuge had the biggest impact on the development of the cell theory
From one vertex of an octagon you can draw 5 diagonals.
There are 8 vertices in an octagon, and we are choosing one as our starting vertex. There are then 7 vertices left to draw a line to, but 2 of the vertices are already connected to our main vertex (because they are connected along the side of the octagon). That leaves 5 vertices to draw a diagonal to from our original vertex.
Answer:
16:12
Step-by-step explanation:
if there is 12 boys, that leaves the other 16 to be girls