Answer:
1) Exothermic.
2) 
3) 
Explanation:
Hello there!
1) In this case, for these calorimetry problems, we can realize that since the temperature increases the reaction is exothermic because it is releasing heat to solution, that is why the temperature goes from 22.0 °C to 28.6 °C.
2) Now, for the total heat released by the reaction, we first need to assume that all of it is absorbed by the solution since it is possible to assume that the calorimeter is perfectly isolated. In such a way, it is also valid to assume that the specific heat of the solution is 4.184 J/(g°C) as it is mostly water, therefore, the heat released by the reaction is:

3) Finally, since the enthalpy of reaction is calculated by dividing the heat released by the reaction over the moles of the solute, in this case LiCl, we proceed as follows:

Best regards!
Answer:
Dalton's theory are based on the two laws that are: Law of conservation of mass and law of constant composition. This theory basically described their properties of atoms.
This theory state that all the atoms are made up of matter which are invisible and in the elements all the atoms are identical in mass and properties.
Answer:
0.125
Explanation:
i took a test and got it right choosing this answer hopes this help
Reaching 29,029 feet (8,848 meters) above sea level, Mount Everest is the highest mountain on Earth. Located in the Mahalangur section of the Himalayas, the mountain's summit straddles the border separating China and Nepal.
Or if you want a more literary description, try some devices to describe it i.e what's there, the atmosphere, the height/gradient etc.
Answer: There are 7 alpha-particle emissions and 4 beta-particle emissions involved in this series
Explanation:
Alpha Decay: In this process, a heavier nuclei decays into lighter nuclei by releasing alpha particle. The mass number is reduced by 4 units and atomic number is reduced by 2 units.
Beta Decay : It is a type of decay process, in which a proton gets converted to neutron and an electron. This is also known as -decay. In this the mass number remains same but the atomic number is increased by 1.
In radioactive decay the sum of atomic number or mass number of reactants must be equal to the sum of atomic number or mass number of products .

Thus for mass number : 235 = 207+4X
4X= 28
X = 7
Thus for atomic number : 92 = 82+2X-Y
2X- Y = 10
2(7) - Y= 10
14-10 = Y
Y= 4

Thus there are 7 alpha-particle emissions and 4 beta-particle emissions involved in this series