Protons, nuetrons, and electrons
Answer:
2.41065 grams
Explanation:
Here we have to apply molarity, particularly in reference to the equation molarity = moles of solute / volume. I would like to rewrite this formula, but with respect to the units - grams = moles / Liters,
We can use molarity to determine the number of moles. After doing so, we can determine the mass of the solute with respect to the formula moles = mass / molar mass. The molar mass of NaCl is 58.44 grams.
_______________________________________________________
275 mL = 0.275 L,
Number of Moles of NaCl = 0.150 * 0.275 = 0.04125 moles,
Mass = 0.04125 * 58.44 = 2.41065 grams,
Solution - Mass of NaCl = 2.41065 grams
<u><em>Hope that helps!</em></u>
Your question looks a bit incomplete as you have the same contents in options a) and d). According to your list, I can't see the correct answer, but I can give you one.The difference between the potential energy of the products of the potential energy of the reactants is equal to the enthalpy of the reaction.
<span>1. Fill a beaker or graduated cylinder with enough water to completely immerse the sphere in. 2. Record the baseline initial measurement. 3. Drop the sphere in. 4 <span>Record final measurement.</span></span>
Answer:
20.1 g
Explanation:
The solubility indicates how much of the solute the solvent can dissolve. A solution is saturated when the solvent dissolved the maximum that it can do, so, if more solute is added, it will precipitate. The solubility varies with the temperature. Generally, it increases when the temperature increases.
So, if the solubility is 40.3 g/L, and the volume is 500 mL = 0.5 L, the mass of the solute is:
40.3 g/L = m/V
40.3 g/L = m/0.5L
m = 40.3 g/L * 0.5L
m = 20.1 g