From the periodic table:
molecular mass of carbon = 12 grams
molecular mass of fluorine = 18.99 grams
molecular mass of chlorine = 35.5 grams
Therefore:
one mole of CF2Cl2 = 12 + 2(18.99) + 2(35.5) = 120.98 grams
Therefore, we can use cross multiplication to find the number of moles in 79.34 grams as follows:
mass = (79.34 x 1) / 120.98 = 0.6558 moles
Now, one mole contains 6.022 x 10^23 molecules, therefore:
number of molecules in 0.65548 moles = 0.6558 x 6.022 x 10^23
= 3.949 x 10^23 molecules
Answer:
1231
Explanation:
nnfjjkdnsggjnSVDDK and that how u get the answer i a grammer
<u>Answer:</u> The value of equilibrium constant for the net reaction is 11.37
<u>Explanation:</u>
The given chemical equations follows:
<u>Equation 1:</u> ![A+2B\xrightarrow[]{K_1} 2C](https://tex.z-dn.net/?f=A%2B2B%5Cxrightarrow%5B%5D%7BK_1%7D%202C)
<u>Equation 2:</u> ![2C\xrightarrow[]{K_2} D](https://tex.z-dn.net/?f=2C%5Cxrightarrow%5B%5D%7BK_2%7D%20D)
The net equation follows:
![D\xrightarrow[]{K} A+2B](https://tex.z-dn.net/?f=D%5Cxrightarrow%5B%5D%7BK%7D%20A%2B2B)
As, the net reaction is the result of the addition of first equation and the reverse of second equation. So, the equilibrium constant for the net reaction will be the multiplication of first equilibrium constant and the inverse of second equilibrium constant.
The value of equilibrium constant for net reaction is:

We are given:


Putting values in above equation, we get:

Hence, the value of equilibrium constant for the net reaction is 11.37
Answer:
9 atoms
Explanation:
Explanation: In 1 formula unit of Al(NO3)3 , there are (clearly!) 9 atoms of oxygen, 3 nitrogen atoms, and 1 aluminum atom. I have gone on before that the mole ( NA , Avogadro's number) is simply a much larger number, i.e. NA = 6.022×1023 .