29 2 and 1 are the answers
Let
x = first integer
y = second integer
z = third integer
First equation: x + y + z = 194
Second equation: x + y = z + 80
Third equation: z = x - 45
Let's find the values of x, y and z.
Substitute 3rd eq to 1st eq:
x + y + x - 45 = 194
2x + y = 45 + 194
y = -2x + 239
Plug in both we have solved for y and the 3rd eq to the 2nd eq to find x
x + (-2x + 239) = (x - 45) + 80
x - 2x - x = -45 + 80 - 239
-2x = -204
x = -204/-2
x = 102
Solving for y,
y = -2(102) + 239
y = 35
Solving for z,
z = 102 - 45
z = 57

Here, we want to find the diagonal of the given solid
To do this, we need the appropriate triangle
Firstly, we need the diagonal of the base
To get this, we use Pythagoras' theorem for the base
The other measures are 6 mm and 8 mm
According ro Pythagoras' ; the square of the hypotenuse equals the sum of the squares of the two other sides
Let us have the diagonal as l
Mathematically;
![\begin{gathered} l^2=6^2+8^2 \\ l^2\text{ = 36 + 64} \\ l^2\text{ =100} \\ l\text{ = }\sqrt[]{100} \\ l\text{ = 10 mm} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20l%5E2%3D6%5E2%2B8%5E2%20%5C%5C%20l%5E2%5Ctext%7B%20%3D%2036%20%2B%2064%7D%20%5C%5C%20l%5E2%5Ctext%7B%20%3D100%7D%20%5C%5C%20l%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B100%7D%20%5C%5C%20l%5Ctext%7B%20%3D%2010%20mm%7D%20%5Cend%7Bgathered%7D)
Now, to get the diagonal, we use the triangle with height 5 mm and the base being the hypotenuse we calculated above
Thus, we calculate this using the Pytthagoras' theorem as follows;
Answer:
10
Step-by-step explanation:
1x2x2.5=5
5/0.5=10
Answer:
3/6 or 1/2 (50%)
Step-by-step explanation:
There is 6 containers of each flavor, correct?
If you pick 3 of the same flavor, 3/6, it would look like that fraction.
If you simplify it, It'd be 1/2.
If you want it as a percent, It'd be 50%.
As a decimal, It's .50.