Answer:
4
Step-by-step explanation:
Answer:
- 273 mL of 5%
- 117 mL of 15%
Step-by-step explanation:
Let q represent the quantity of 15% dressing used. Then the amount of 5% dressing is (390 -q). The amount of vinegar in the mix is ...
0.15q + 0.05(390 -q) = 0.08(390)
0.10q = 31.2 -19.5 = 11.7 . . . . . . subtract 0.05(390) and simplify
q = 117 . . . . . . . . . . . . . . . . . . multiply by 10
390-q = 273
The chef should use 273 mL of the first brand (5% vinegar) and 117 mL of the second brand (15% vinegar).
__
<em>Additional comment</em>
You may have noticed that the value of q is (0.08 -0.05)/(0.10 -0.05)×390. The fraction of the mix that is the highest contributor is the ratio of the difference between the mix value and least contributor, divided by the difference between the contributors: (8-5)/(15-5) = 3/10, the fraction that is 15% vinegar. This is the generic solution to mixture problems.
The pH of the weak acid is 3.21
Butyric acid is known as a weak acid, we need the concentration of [H+] formula of weak acid which is given by this equation :
![[H^{+}]=\sqrt{Ka . Ma}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D%5Csqrt%7BKa%20.%20Ma%7D)
where [H+] is the concentration of ion H+, Ka is the weak acid ionization constant, and Ma is the acid concentration.
Since we know the concentration of H+, the pH can be calculated by using
pH = -log[H+]
From question above, we know that :
Ma = 0.0250M
Ka = 1.5 x 10¯⁵
By using the equation, we can determine the concentration of [H+]
[H+] = √(Ka . Ma)
[H+] = √(1.5 x 10¯⁵ . 0.0250)
[H+] = 6.12 x 10¯⁴ M
Substituting the value of [H+] to get the pH
pH = -log[H+]
pH = -log(6.12 x 10¯⁴)
pH = 3.21
Hence, the pH of the weak acid c3h7cooh is 3.21
Find more on pH at: brainly.com/question/14466719
#SPJ4