<span>The 2nd truck was overloaded with a load of 16833 kg instead of the permissible load of 8000 kg.
The key here is the conservation of momentum.
For the first truck, the momentum is
0(5100 + 4300)
The second truck has a starting momentum of
60(5100 + x)
And finally, after the collision, the momentum of the whole system is
42(5100 + 4300 + 5100 + x)
So let's set the equations for before and after the collision equal to each other.
0(5100 + 4300) + 60(5100 + x) = 42(5100 + 4300 + 5100 + x)
And solve for x, first by adding the constant terms
0(5100 + 4300) + 60(5100 + x) = 42(14500 + x)
Getting rid of the zero term
60(5100 + x) = 42(14500 + x)
Distribute the 60 and the 42.
60*5100 + 60x = 42*14500 + 42x
306000 + 60x = 609000 + 42x
Subtract 42x from both sides
306000 + 18x = 609000
Subtract 306000 from both sides
18x = 303000
And divide both sides by 18
x = 16833.33
So we have the 2nd truck with a load of 16833.33 kg, which is well over it's maximum permissible load of 8000 kg. Let's verify the results by plugging that mass into the before and after collision momentums.
60(5100 + 16833.33) = 60(21933.33) = 1316000
42(5100 + 4300 + 5100 + 16833.33) = 42(31333.33) = 1316000
They match. The 2nd truck was definitely over loaded.</span>
Answer:
<h2>
137.69°</h2>
Explanation:
The phase angle of an RLC circuit ϕ is expressed as shoen below;
ϕ = 
Xc is the capacitive reactance = 1/2πfC
Xl is the inductive reactance = 2πfL
R is the resistance = 25.0Ω
Given C = 35.5 μF, L = 0.0940 H, and frequency f = 70.0Hz
Xl = 2π * 70*0.0940
Xl = 41.32Ω
For the capacitive reactance;
Xc = 1/2π * 70*35.5*10⁻⁶
Xc = 1/0.0156058
Xc = 64.08Ω
Phase angle ϕ = 
ϕ = 

Since tan is negative in the 2nd quadrant;

Hence the phase angle ϕ of the circuit in degrees is 137.69°
Answer:
Answered
Explanation:
A separated flow is a characteristic of a flow-field over a __Stalled__ airfoil. Stall is the reduction in lift coefficient generated by a foil as angle of attack increases.
The critical angle of attack is typically about 15 degrees, but it may vary significantly depending on the fluid, foil, and Reynolds number.The boundary layer will tend to separate from the top surface and a large wake is formed downstream.
Answer:
102900 Joules
Explanation:
Assuming the kinetic energy was zero at the moment of release, you can make the following argument to solve the problem:
The potential energy at full height was mgh. We are told that after 70% of the distance, i.e., mg(0.3h) = 44.1kJ. Since potential energy is linear in altitude h, we get get the full potential energy to be 44.1kJ/0.3. The difference between full potential energy and the one after 70% of the way must equal the gained kinetic energy (neglecting stuff like heat due to friction). So,
44.1kJ/0.3 - 44.1kJ = 0.7*44.1kJ/0.3 = 102.9kJ = Ekinetic
The kinetic energy after 70% of the falling distance was 102.9 kJ.