Explanation:
The of formic acid is pK 3.750. what is the Ka of formic acid?
Answer:
The angular momentum of the solid sphere is 0.667 kgm²/s
Explanation:
Given;
radius of the solid sphere, r = 0.15 m
mass of the sphere, m = 13 kg
angular speed of the sphere, ω = 5.70 rad/s
The angular momentum of the solid sphere is given;
L = Iω
Where;
I is the moment of inertia of the solid sphere
ω is the angular speed of the solid sphere
The moment of inertia of solid sphere is given by;
I = ²/₅mr²
I = ²/₅ x (13 x 0.15²)
I = 0.117 kg.m²
The angular momentum of the solid sphere is calculated as;
L = Iω
L = 0.117 x 5.7
L = 0.667 kgm²/s
Therefore, the angular momentum of the solid sphere is 0.667 kgm²/s
Answer:
No, the magnitude of the magnetic field won't change.
Explanation:
The magnetic field produced by a wire with a constant current is circular and its flow is given by the right-hand rule. Since this field is circular with center on the wire the magnitude of the magnetic field around the wire will be given by B = [(\mi_0)*I]/(2\pi*r) where (\mi_0) is a constant, I is the current that goes through the conductor and r is the distance from the wire. If the field sensor will move around the wire with a fixed radius the distance from the wire won't change so the magnitude of the field won't change.
The half-meter rule (easy math) is 0.5 meters or 50 centimeters since a meter is 1 meters long, which is equivalent to 100 centimeters. Therefore, we shall apply the 50 cm rule.
A 50 cm rule's center of mass is now 25 cm away.
Additionally, according to the data, the object is pivoted at 15 cm, while the 40 g object is hung at 2 cm from the rule's beginning. Using a straightforward formula, we can compare the two situations: the distance from the pivot to the center of the mass times the mass of the 40 g object divided by 2 cm must equal the distance from the pivot to the center of the mass times mass of the 10 x g object
The result of the straightforward computation must be 52g.
Most simplified version:
the center of mass of the rule is at the 25 cm mark
⇒ 
⇒ 
#SPJ2