For question 7 the answer is x=0.5
from the provided focus point and directrix, we can see that the focus point is above the directrix, meaning is a vertical parabola and is opening upwards, thus the squared variable will be the "x".
keeping in mind the vertex is half-way between these two fellows, Check the picture below.
![\bf \textit{vertical parabola vertex form with focus point distance} \\\\ 4p(y- k)=(x- h)^2 \qquad \begin{cases} \stackrel{vertex}{(h,k)}\qquad \stackrel{focus~point}{(h,k+p)}\qquad \stackrel{directrix}{y=k-p}\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix}\\\\ \stackrel{"p"~is~negative}{op ens~\cap}\qquad \stackrel{"p"~is~positive}{op ens~\cup} \end{cases} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvertical%20parabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%204p%28y-%20k%29%3D%28x-%20h%29%5E2%20%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bfocus~point%7D%7B%28h%2Ck%2Bp%29%7D%5Cqquad%20%5Cstackrel%7Bdirectrix%7D%7By%3Dk-p%7D%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22p%22~is~negative%7D%7Bop%20ens~%5Ccap%7D%5Cqquad%20%5Cstackrel%7B%22p%22~is~positive%7D%7Bop%20ens~%5Ccup%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

Answer:
Step-by-step explanation:
those are 2 lines, and to graph them find 2 points for each to draw a line trough them
line 1
y-2x=0 so y=2x
pick any value for x
(x=1, y=2*1=2), (x=3, y=2*3=6)
Draw a line trough points (1,2) and (3,6)
line 2
y=4x+3
(x=1, y=4*1+3=7), (x= -1, y= 4(-1)+3= -1)
Draw a line trough points (1,7) and (-1, -1)
Answer:
y=-3x+5
Step-by-step explanation:
y=mx+b
m=slope or gradient (=-3)
y=-3x+b
Add your points
(2, -1)
-1=(-3 x 2)+b
-1= -6+b
-1+6=b
b=5
y=-3x+5

The pattern having the fastest growth rate is :