To round off to 10, the difference should range from 5 to 14. If the difference between two numbers is from 5 to 14, they all are rounded to 10.
Example:
(near to 10)
![26-15=11](https://tex.z-dn.net/?f=26-15%3D11)
![46-39=7](https://tex.z-dn.net/?f=46-39%3D7)
![50-42=8](https://tex.z-dn.net/?f=50-42%3D8)
If you divide both the Cashew butter and the macadamia butter in half and then multiply the peanut butter by 4 you will get $25.62 (after adding the answers up)
Answer:
-312
Step-by-step explanation:
Note that mailing address is unique, but houses are not, meaning that you can't have house A and house B both referencing the same address.
So, in order to have a valid function, any two points on the function cannot have the same x value that lands on different y.
With this property mentioned, it's clear to see that
(house, address) is NOT a function; however, (address, house) is a function, since same x lands on multiple y values is a valid onto function. (a house that have multiple addresses)
Answer:
![Max\ Area = \frac{x^2}{16}](https://tex.z-dn.net/?f=Max%5C%20Area%20%3D%20%5Cfrac%7Bx%5E2%7D%7B16%7D)
Step-by-step explanation:
Given
---- the perimeter of fencing
Required
The maximum area
Let
![L \to Length](https://tex.z-dn.net/?f=L%20%5Cto%20Length)
![W \to Width](https://tex.z-dn.net/?f=W%20%5Cto%20Width)
So, we have:
![P = 2(L + W)](https://tex.z-dn.net/?f=P%20%3D%202%28L%20%2B%20W%29)
This gives:
![2(L + W) = x](https://tex.z-dn.net/?f=2%28L%20%2B%20W%29%20%3D%20x)
Divide by 2
![L + W = \frac{x}{2}](https://tex.z-dn.net/?f=L%20%2B%20W%20%3D%20%5Cfrac%7Bx%7D%7B2%7D)
Make L the subject
![L = \frac{x}{2} - W](https://tex.z-dn.net/?f=L%20%3D%20%5Cfrac%7Bx%7D%7B2%7D%20-%20W)
The area (A) of the fence is:
![A = L * W](https://tex.z-dn.net/?f=A%20%3D%20L%20%2A%20W)
Substitute ![L = \frac{x}{2} - W](https://tex.z-dn.net/?f=L%20%3D%20%5Cfrac%7Bx%7D%7B2%7D%20-%20W)
![A = (\frac{x}{2} - W) * W](https://tex.z-dn.net/?f=A%20%3D%20%28%5Cfrac%7Bx%7D%7B2%7D%20-%20W%29%20%2A%20W)
Open bracket
![A = \frac{x}{2}W - W^2](https://tex.z-dn.net/?f=A%20%3D%20%5Cfrac%7Bx%7D%7B2%7DW%20-%20W%5E2)
Differentiate with respect to W
![A' = \frac{x}{2} - 2W](https://tex.z-dn.net/?f=A%27%20%3D%20%5Cfrac%7Bx%7D%7B2%7D%20-%202W)
Set to 0
![\frac{x}{2} - 2W = 0](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7B2%7D%20-%202W%20%3D%200)
Solve for 2W
![2W = \frac{x}{2}](https://tex.z-dn.net/?f=2W%20%3D%20%5Cfrac%7Bx%7D%7B2%7D)
Solve for W
![W = \frac{x}{4}](https://tex.z-dn.net/?f=W%20%3D%20%5Cfrac%7Bx%7D%7B4%7D)
Recall that:
![L = \frac{x}{2} - W](https://tex.z-dn.net/?f=L%20%3D%20%5Cfrac%7Bx%7D%7B2%7D%20-%20W)
![L = \frac{x}{2} - \frac{x}{4}](https://tex.z-dn.net/?f=L%20%3D%20%5Cfrac%7Bx%7D%7B2%7D%20-%20%5Cfrac%7Bx%7D%7B4%7D)
![L = \frac{2x- x}{4}](https://tex.z-dn.net/?f=L%20%3D%20%5Cfrac%7B2x-%20x%7D%7B4%7D)
![L = \frac{x}{4}](https://tex.z-dn.net/?f=L%20%3D%20%5Cfrac%7Bx%7D%7B4%7D)
So, the maximum area is:
![A = L * W](https://tex.z-dn.net/?f=A%20%3D%20L%20%2A%20W)
![A = \frac{x}{4}*\frac{x}{4}](https://tex.z-dn.net/?f=A%20%3D%20%5Cfrac%7Bx%7D%7B4%7D%2A%5Cfrac%7Bx%7D%7B4%7D)
![Max\ Area = \frac{x^2}{16}](https://tex.z-dn.net/?f=Max%5C%20Area%20%3D%20%5Cfrac%7Bx%5E2%7D%7B16%7D)