I think that the sum will always be a rational number
let's prove that
<span>any rational number can be represented as a/b where a and b are integers and b≠0
</span>and an integer is the counting numbers plus their negatives and 0
so like -4,-3,-2,-1,0,1,2,3,4....
<span>so, 2 rational numbers can be represented as
</span>a/b and c/d (where a,b,c,d are all integers and b≠0 and d≠0)
their sum is
a/b+c/d=
ad/bd+bc/bd=
(ad+bc)/bd
1. the numerator and denominator will be integers
2. that the denominator does not equal 0
alright
1.
we started with that they are all integers
ab+bc=?
if we multiply any 2 integers, we get an integer
<span>like 3*4=12 or -3*4=-12 or -3*-4=12, etc.
</span>even 0*4=0, that's an integer
the sum of any 2 integers is an integer
like 4+3=7, 3+(-4)=-1, 3+0=3, etc.
so we have established that the numerator is an integer
now the denominator
that is just a product of 2 integers so it is an integer
<span>2. we originally defined that b≠0 and d≠0 so we're good
</span>therefore, the sum of any 2 rational numbers will always be a rational number <span>is the correct answer.</span>
Answer:
increases
Step-by-step explanation:
921÷ 2 = 460.5
which means the remainder is 1
So; the answer is 1
Answer: Choice A) Add 3.8 to both sides of the equation
Explanation:
If we knew the value of w, then we would replace it and apply PEMDAS.
However, we don't know the value of w, so we undo each step of PEMDAS going backwards.
We start with the "S" of PEMDAS, and undo the subtraction. To undo subtraction, you apply addition. To undo that "minus 3.8" we add 3.8 to both sides.
Answer:
30 ft²
Step-by-step explanation:
Area of trapezium = 1/2 (a + b)h
a = 6 ft , b = 9 ft , h = 4 ft
Area = 1/2 (6 + 9) 4
= 30 ft²