Beth's description of the transformation is incorrect
<h3>Complete question</h3>
Beth says that the graph of g(x)=x-5+1 is a translation of 5 units to the left and 1 unit up of f(x) = x. She continues to explain that the point (0,0) on the square root function would be translated to the point (-5,1) on the graph of g(x). Is Beth's description of the transformation correct? Explain
<h3>How to determine the true statement?</h3>
The functions are given as:
g(x) = x - 5 + 1
f(x) = x
When the function f(x) is translated 5 units left, we have:
f(x + 5) = x + 5
When the above function is translated 1 unit up, we have:
f(x + 5) + 1 = x + 5 + 1
This means that the actual equation of g(x) should be
g(x) = x + 5 + 1
And not g(x) = x - 5 + 1
By comparison;
g(x) = x - 5 + 1 and g(x) = x + 5 + 1 are not the same
Hence, Beth's description of the transformation is incorrect
Read more about transformation at:
brainly.com/question/17121698
#SPJ1
The answer is 13 for your question
If you would like to solve p = r - c for c, you can do this using the following steps:
p = r - c /+c
p + c = r - c + c
p + c = r /-p
p + c - p = r - p
c = r - p
The correct result would be c = r - p.
Answer:
1000
=
125
/65536
Step-by-step explanation:
Rewrite the expression using the negative exponent rule and then Raise
2 to the power of
21
. Cancel the common factor of 32. Combine 125 and 1
/65536