1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hichkok12 [17]
3 years ago
8

Find a vector equation and parametric equations for the line. (Use the parameter t.) The line through the point (1, 0, 9) and pe

rpendicular to the plane x 2y z
Mathematics
1 answer:
lora16 [44]3 years ago
4 0

Answer:

the parameter equation of given line is

x= 1+t

y=0+ 2t

z= 9+t

( note: in plane no signs given so we assume + so x+2y+z)

Step-by-step explanation:

A vector perpendicular to the plane   a x + b y + c z + d = 0  is given by  ⟨ a , b , c ⟩

So a vector perpendicular to the plane  x +2 y +  z −  = 0   is  ⟨ 1 , 2 , 1 ⟩

The parametric equation of a line through  (x_{0} ,y_{0}, z_{0} )  and parallel to the vector  ⟨ a , b , c ⟩  is  

x=x_{0} +ta\\y=y_{0} +tb\\z=z_{0} +tc

so the parametric equation of our line is

x=1+t\\y=2t\\z=9+t

The vector form of the line is  

r=+t

You might be interested in
Answer a and b ASAP
melomori [17]

Answer:

The area of the rectangle is 48cm2

6 0
3 years ago
Football is selling boxes of candy as a fundraiser.Ms. South ordered three small boxes and two large box fora total of $36. Chri
JulsSmile [24]

Answer: The price of each small box is $4.8  and the price of each large box is $10.8.

Step-by-step explanation:

Let x = Price of each small box, y= price of each large box.

As per given,

3x+2y= 36  ...(i)

4x+y= 30  ...(ii)

Multiplying 2 to (ii), we get

8x+2y =60...(iii)

Subtract (i) from (iii), we get

5x= 24

x= 4.8

From (ii)

4(4.8)+y= 30

19.2+y=30

y= 10.8

Hence, the price of each small box is $4.8  and the price of each large box is $10.8.

5 0
3 years ago
Researchers measured the data speeds for a particular smartphone carrier at 50 airports. The highest speed measured was 75.6 Mbp
olga55 [171]

Answer:

a) 59.98

b) 2.99

c) 2.99

d) Significantly High

Step-by-step explanation:

Part a)

Highest speed measured = x = 75.6 Mbps

Average/Mean speed = \overline{x} = 15.62 Mbps

Standard Deviation = s = 20.03 Mbps

We need to find the difference between carrier's highest data speed and the mean of all 50 data​ speeds i.e. x - \overline{x}

x - \overline{x} = 75.6 - 15.62 = 59.98 Mbps

Thus, the difference between​ carrier's highest data speed and the mean of all 50 data​ speeds is 59.98 Mbps

Part b)

In order to find how many standard deviations away is the difference found in previous part, we divide the difference by the value of standard deviation i.e.

\frac{59.98}{20.03}=2.99

This means, the difference is 2.99 standard deviations or in other words we can say, the Carrier's highest data speed is 2.99 standard deviations above the mean data speed.

Part c)

A z score tells us that how many standard deviations away is a value from the mean. We calculated the same in the previous part. Performing the same calculation in one step:

The formula for the z score is:

z=\frac{x-\overline{x}}{s}

Using the given values, we get:

z=\frac{75.6-15.62}{20.03}=2.99

Thus, the Carriers highest data is equivalent to a z score of 2.99

Part d)

The range of z scores which are neither significantly low nor significantly​ high is -2 to + 2. The z scores outside this range will be significant.

Since, the z score for carrier's highest data speed is 2.99 which is well outside the given range, i.e. greater than 2, we can conclude that the  carrier's highest data speed​ is significantly higher.

3 0
3 years ago
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
3 years ago
Se vendieron un total de 430 boletos para la obra de teatro escolar. Los boletos eran o de adulto o de estudiante. Se vendieron
BartSMP [9]

Resolviendo un sistema de ecuaciones, veremos que se vendieron 250 boletos de adulto.

<h3>¿Cuántos boletos de adulto fueron vendidos?</h3>

Definamos las variables:

  • x = boletos de adulto vendidos.
  • y = boletos de estudiantes vendidos.

Se vendieron un total de 430 boletos, entonces:

x + y = 430

Y se vendieron 70 boletos de estudiante menos que boletos de adulto:

y = x - 70

Tenemos el sistema de ecuaciones:

x + y = 430

y = x - 70

Para resolverlo, podemos reemplazar la segunda ecuación en la primera:

x + y = 430

x + (x - 70) = 430

2x = 430 + 70 = 500

x = 500/2 = 250

Se vendieron 250 boletos de adulto.

Sí quieres aprender más sobre sistemas de ecuaciones:

brainly.com/question/13729904

#SPJ1

5 0
2 years ago
Other questions:
  • $250 is invested at a bank that pays 7% simple interest. calculate the amount of money in the account after 1 year, 3 years, 7 y
    10·1 answer
  • An amount obtained as a result of subtracting numbers
    9·1 answer
  • Six tools are in a bag - a hammer, wrench, drill, pliers, screwdriver, and measuring tape. You are trying to find the
    11·2 answers
  • Can someone answer part B for me? Thank you and will give brainliest.
    6·1 answer
  • Please help me with this .
    15·2 answers
  • HELP ASAP ITS EASY BUT IM BLANKING AND ITS 20 POINTS PLUS BRAINLIEST
    14·2 answers
  • Someone please help me!
    6·1 answer
  • What is the solution to 3.25k + 1 - 4.25k = -2
    11·2 answers
  • On a coordinate plane, a graph shows Street on the x-axis and Avenue on the y-axis. A line is drawn from Tia to Lei. Tia is at (
    13·1 answer
  • Is finding a car's depreciation over a 10 year period considered as univariate or bivariate?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!