Answer:
destructive interference?
Explanation:
Answer:
A.'C
Explanation:
Please answer my question
<u>Answer:</u> The given amount of iron reacts with 9.0 moles of
and produce 6.0 moles of 
<u>Explanation:</u>
We are given:
Moles of iron = 12.0 moles
The chemical equation for the rusting of iron follows:

By Stoichiometry of the reaction:
4 moles of iron reacts with 3 moles of oxygen gas
So, 12.0 moles of iron will react with =
of oxygen gas
- <u>For iron (III) oxide:</u>
By Stoichiometry of the reaction:
4 moles of iron produces 2 moles of iron (III) oxide
So, 12.0 moles of iron will produce =
of iron (III) oxide
Hence, the given amount of iron reacts with 9.0 moles of
and produce 6.0 moles of 
Answer:
(d)
Explanation:
Carbonyl group can be the placement of kerosene sugar
A reaction is exothermic if Δ<em>H</em> (or
in some textbooks) is negative:
- H₂ + Br → 2 HBr, ΔH < 0.
- CH₄ + 2 O₂ → CO₂ + 2 H₂O, ΔH < 0.
A reaction is endothermic if Δ<em>H</em> is positive:
- 2 NH₃ → N₂ + 3 H₂, ΔH > 0.
- 2 HCl → H₂ + Cl₂ ΔH > 0.
<h3>Explanation</h3>
The enthalpy of a system is the sum of its internal energy. ΔH < 0 indicates that the reactants lose internal energy in the reaction. Energy conserves, and those internal energies must have converted to some other form of energy. They typically end up as thermal energy. The reaction will release heat since it is exothermic.
Similarly, ΔH > 0 indicates that the reactants gains internal energy in the reaction. Energy conserves. As a result, the reaction must have gained energy from its surroundings. The reaction will be endothermic since it absorbs heat.