Answer:
z = 5*(1/2)
z = 5/10
---
time switching classes:
w = 7/10
---
y - 6x - z - w = 0
6x = y - z - w
x = (y - z - w)/6
x = (76/10 - 5/10 - 7/10)/6
x = (76 - 5 - 7)/(10*6)
x = (64)/(10*6)
x = (2*2*2*2*2*2)/(2*5*2*3)
x = (2*2*2*2)/(5*3)
x = 16/15
x = 1.0666666666
---
check:
y = 7 + 3/5
y = 7.6
z = 1/2
z = 0.5
w = 7/10
w = 0.7
y - 6x - z - w = 0
6x = y - z - w
x = (y - z - w)/6
x = (7.6 - 0.5 - 0.7)/6
x = 1.0666666666
---
answer:
z = 5*(1/2)
z = 5/10
---
time switching classes:
w = 7/10
---
y - 6x - z - w = 0
6x = y - z - w
x = (y - z - w)/6
x = (76/10 - 5/10 - 7/10)/6
x = (76 - 5 - 7)/(10*6)
x = (64)/(10*6)
x = (2*2*2*2*2*2)/(2*5*2*3)
x = (2*2*2*2)/(5*3)
x = 16/15
x = 1.0666666666
---
check:
y = 7 + 3/5
y = 7.6
z = 1/2
z = 0.5
w = 7/10
w = 0.7
y - 6x - z - w = 0
6x = y - z - w
x = (y - z - w)/6
x = (7.6 - 0.5 - 0.7)/6
x = 1.0666666666
---
answer:
each class is 1.07 hours
Step-by-step explanation:
Answer: The tenth term is 76
=======================================================
Explanation:
We use this arithmetic sequence formula to get the nth term

Plug in
and you should get the following:

The tenth term is <u>76</u>
---------
We can verify this by listing out the terms one by one. Start at 4, add on 8 each time, until you generate the 10th term. A table like the one shown below is a good way to keep track of all the terms.

---------
In short, the error is with the "10" in the expression 4+10(8). The student should have used 9 instead. This is because of the n-1 term in
which shifts everything one spot to the left.
The answer is 1because a number is multiple by 20 then 200 and multiple by 3 -7=1
We need to see the exercise before that or we cant solve it!
Answer:
B. 2/3
Step-by-step explanation:
To solve this we have to take into account this axioms:
- The total probability is always equal to 1.
- The probability of a randomly selected point being inside the circle is equal to one minus the probability of being outside the circle.
Then, if the probabilities are proportional to the area, we have 1/3 probability of selecting a point inside a circle and (1-1/3)=2/3 probability of selecting a point that is outside the circle.
Then, the probabilty that a random selected point inside the square (the total probability space) and outside the circle is 2/3.