Answer:
51
Step-by-step explanation:
since 1 = 39 degrees, it'd be complementary if you were to open it up if it were a C, it would be 90. So since its this way, i believe you would take 39 and do 90 - 39 to get your answer. Im sorry if this is wrong but i hope it helps you!!
Answer:
D and I
Step-by-step explanation:
Convert to a fraction<span> by placing the </span>decimal number<span> over a </span>power<span> of </span><span>10.</span>
<span>37 over 200</span>
Hi,
the dealership increased the price by %4., this means the we have to multiply the % times the price.
A. %4 in decimal will be 0.04
B. new price = $ 46 500 * 0.004 = $1860
new price = 46500 + 1860 . =$48360
Solve the following system using elimination:
{-2 x + 2 y + 3 z = 0 | (equation 1)
{-2 x - y + z = -3 | (equation 2)
{2 x + 3 y + 3 z = 5 | (equation 3)
Subtract equation 1 from equation 2:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x - 3 y - 2 z = -3 | (equation 2)
{2 x + 3 y + 3 z = 5 | (equation 3)
Multiply equation 2 by -1:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+3 y + 2 z = 3 | (equation 2)
{2 x + 3 y + 3 z = 5 | (equation 3)
Add equation 1 to equation 3:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+3 y + 2 z = 3 | (equation 2)
{0 x+5 y + 6 z = 5 | (equation 3)
Swap equation 2 with equation 3:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y + 6 z = 5 | (equation 2)
{0 x+3 y + 2 z = 3 | (equation 3)
Subtract 3/5 × (equation 2) from equation 3:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y + 6 z = 5 | (equation 2)
{0 x+0 y - (8 z)/5 = 0 | (equation 3)
Multiply equation 3 by 5/8:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y + 6 z = 5 | (equation 2)
{0 x+0 y - z = 0 | (equation 3)
Multiply equation 3 by -1:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y + 6 z = 5 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Subtract 6 × (equation 3) from equation 2:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y+0 z = 5 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Divide equation 2 by 5:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+y+0 z = 1 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Subtract 2 × (equation 2) from equation 1:
{-(2 x) + 0 y+3 z = -2 | (equation 1)
{0 x+y+0 z = 1 | (equation 2)
v0 x+0 y+z = 0 | (equation 3)
Subtract 3 × (equation 3) from equation 1:
{-(2 x)+0 y+0 z = -2 | (equation 1)
{0 x+y+0 z = 1 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Divide equation 1 by -2:
{x+0 y+0 z = 1 | (equation 1)
{0 x+y+0 z = 1 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Collect results:
Answer: {x = 1, y = 1, z = 0