Answer:
Therefore, HL theorem we will prove for Triangles Congruent.
Step-by-step explanation:
Given:
Label the Figure first, Such that
Angle ADB = 90 degrees,
angle ADC = 90 degrees, and
AB ≅ AC
To Prove:
ΔABD ≅ ΔACD by Hypotenuse Leg theorem
Proof:
In Δ ABD and Δ ACD
AB ≅ AC ……….{Hypotenuse are equal Given}
∠ADB ≅ ∠ADC ……….{Each angle measure is 90° given}
AD ≅ AD ……….{Reflexive Property or Common side}
Δ ABD ≅ Δ ACD ….{By Hypotenuse Leg test} ......Proved
Therefore, HL theorem we will prove for Triangles Congruent.
To double the principle the formula is
2p=p e^rt
2=e^rt
2=e^0.12t
Solve for t
T=(log(2)÷log(e))÷0.12
T=5.78 years
Answer:
the answer is A and D
Step-by-step explanation:
Answer: x=40°
Step-by-step explanation:
The two triangles are congruent (I think it’s called the interior angle proof) so the bottom right angle is also 65°. All angles in a Triangle equal 180°, so 180-(75+65)=40