domain is 10 and range is 5 and another domain is 10 and range is -3
Step-by-step explanation:
so we're making two draws *with* replacement (this is important)
step 1: for the first draw, it wants the probability of getting a sour candy. to calculate this:
(# of sour candy) / (total # of candy)
step 2: for the second draw, it wants the probability of *not* getting a sour candy. to calculate this, you can calculate 1 - (the probability form part 1).
step 3: to find the probability of both events happening together, simply multiply the probabilities from part 1 and 2 together
side note: for step 2, you can only do this because the candy is being replaced. if there were no replacement, you'd have to re-calculate (# of non-sour candies) / (total after the first candy is drawn)
The third graph represents a function.
In a function, every input (x value) has <em>exactly</em> one output (y value). If even a single input has zero or two outputs, the graph does not represent a function.
A good way of testing this is using a vertical line. As you move a vertical line from left to right across a graph, it should always be touching exactly one point on the graphed line.
In this case, every graph fails this vertical line test except for the third graph, so the third graph represents a function.
Answer:
100 ≥ 12x + 28
Step-by-step explanation:
He needs $100 for the new bike but already has the $28 so you also have to add 12x because thats what you need to find. X represents the amount of days he has to work.