62%
of 25
'of' means multiplication.

Convert 62% to a decimal, divide it by 100(since percentages are parts of 100):
62/100 = 0.62

Multiply:
Answer:
They'll reach the same population in approximately 113.24 years.
Step-by-step explanation:
Since both population grows at an exponential rate, then their population over the years can be found as:

For the city of Anvil:

For the city of Brinker:

We need to find the value of "t" that satisfies:
![\text{population brinker}(t) = \text{population anvil}(t)\\21000*(1.04)^t = 7000*(1.05)^t\\ln[21000*(1.04)^t] = ln[7000*(1.05)^t]\\ln(21000) + t*ln(1.04) = ln(7000) + t*ln(1.05)\\9.952 + t*0.039 = 8.8536 + t*0.0487\\t*0.0487 - t*0.039 = 9.952 - 8.8536\\t*0.0097 = 1.0984\\t = \frac{1.0984}{0.0097}\\t = 113.24](https://tex.z-dn.net/?f=%5Ctext%7Bpopulation%20brinker%7D%28t%29%20%3D%20%5Ctext%7Bpopulation%20anvil%7D%28t%29%5C%5C21000%2A%281.04%29%5Et%20%3D%207000%2A%281.05%29%5Et%5C%5Cln%5B21000%2A%281.04%29%5Et%5D%20%3D%20ln%5B7000%2A%281.05%29%5Et%5D%5C%5Cln%2821000%29%20%2B%20t%2Aln%281.04%29%20%3D%20ln%287000%29%20%2B%20t%2Aln%281.05%29%5C%5C9.952%20%2B%20t%2A0.039%20%3D%208.8536%20%2B%20t%2A0.0487%5C%5Ct%2A0.0487%20-%20t%2A0.039%20%3D%209.952%20-%208.8536%5C%5Ct%2A0.0097%20%3D%201.0984%5C%5Ct%20%3D%20%5Cfrac%7B1.0984%7D%7B0.0097%7D%5C%5Ct%20%3D%20113.24)
They'll reach the same population in approximately 113.24 years.
Answer:
y=3/2x-6
Step-by-step explanation:
To find the y=mx+b you need to move the y on one side while moving the others on the other side
First, move the 3x to the other side by subtracting by 3x on both sides:
-2y=-3x+12
Divide by -2 on both sides:
y=3/2x-6
Answer:
D
Step-by-step explanation:
It wouldnt be a single grade being surveyed so we would choose d in additon a and b isnt national since it says 'in a certain town' and 'in a certain county'.
Which leaves you with D.
Answer:
Solution
p = {-3, 1}
Step-by-step explanation:
Simplifying
p2 + 2p + -3 = 0
Reorder the terms:
-3 + 2p + p2 = 0
Solving
-3 + 2p + p2 = 0
Solving for variable 'p'.
Factor a trinomial.
(-3 + -1p)(1 + -1p) = 0
Subproblem 1
Set the factor '(-3 + -1p)' equal to zero and attempt to solve:
Simplifying
-3 + -1p = 0
Solving
-3 + -1p = 0
Move all terms containing p to the left, all other terms to the right.
Add '3' to each side of the equation.
-3 + 3 + -1p = 0 + 3
Combine like terms: -3 + 3 = 0
0 + -1p = 0 + 3
-1p = 0 + 3
Combine like terms: 0 + 3 = 3
-1p = 3
Divide each side by '-1'.
p = -3
Simplifying
p = -3
Subproblem 2
Set the factor '(1 + -1p)' equal to zero and attempt to solve:
Simplifying
1 + -1p = 0
Solving
1 + -1p = 0
Move all terms containing p to the left, all other terms to the right.
Add '-1' to each side of the equation.
1 + -1 + -1p = 0 + -1
Combine like terms: 1 + -1 = 0
0 + -1p = 0 + -1
-1p = 0 + -1
Combine like terms: 0 + -1 = -1
-1p = -1
Divide each side by '-1'.
p = 1
Simplifying
p = 1
Solution
p = {-3, 1}