1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alchen [17]
3 years ago
10

Which answer correct estimates the product of 3.09 × 304.87? A. about 9.0 B. about 9.9 C. about 90 D. about 900

Mathematics
2 answers:
Alinara [238K]3 years ago
7 0
The answer is D. about 900. 3.09 x 304.87 =942.0483. so rounded 
by the tens you would get about 900
Keith_Richards [23]3 years ago
4 0
D.)about 900. reason being  it equals 942.0483, rounding to 942.
You might be interested in
Which of the following statements does not describe the structure of an atom?
blagie [28]

Answer:

B) Inside the nucleus of an atom are protons and electrons.

Explanation:

Inside the nucleus of an atom are protons and neutrons. Electrons orbit (kind of?) away from the nucleus.

8 0
2 years ago
Recently, Frank took a one-hundred question aptitude test where each correct answer scored 5 points, each incorrect answer score
Lyrx [107]
Im guessing he answered 30 correct, let me know if im correct
3 0
3 years ago
Read 2 more answers
If f(x) = 9x10 tan−1x, find f '(x).
djverab [1.8K]

Answer:

\displaystyle f'(x) = 90x^9 \tan^{-1}(x) + \frac{9x^{10}}{x^2 + 1}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle f(x) = 9x^{10} \tan^{-1}(x)

<u>Step 2: Differentiate</u>

  1. [Function] Derivative Rule [Product Rule]:                                                   \displaystyle f'(x) = \frac{d}{dx}[9x^{10}] \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]
  2. Rewrite [Derivative Property - Multiplied Constant]:                                  \displaystyle f'(x) = 9 \frac{d}{dx}[x^{10}] \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]
  3. Basic Power Rule:                                                                                         \displaystyle f'(x) = 90x^9 \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]
  4. Arctrig Derivative:                                                                                         \displaystyle f'(x) = 90x^9 \tan^{-1}(x) + \frac{9x^{10}}{x^2 + 1}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

7 0
3 years ago
Write the below algebraic expression<br> in words<br> 3x+ (x)=10<br> 2
enyata [817]

Answer:

Step-by-step explanation:

3 0
3 years ago
Triangle ABC is similar to triangle DEF.
valina [46]

Step-by-step explanation:

angle B = angle E

angle C = angle F

AC= DF

BC = EF

7 0
3 years ago
Other questions:
  • Really help me please
    10·1 answer
  • 0.04 × 0.61 =<br>Tell me how to work this out
    6·2 answers
  • How do I simplify the question in the red boy
    8·2 answers
  • What is the average rate of change of the function below on the interval from x = 0 to x = 2?
    5·1 answer
  • which spreadsheet would be used to compute the first 7 terms of the geometric sequence an=20*(1/2)^n-1
    9·2 answers
  • A grandfather clock’s pendulum has a period of 4.5 seconds. What is its frequency? Round to the nearest hundredth.
    8·1 answer
  • HELP QUICK AND FAST WHAT THE ANSWER
    10·1 answer
  • What are the answers to 18-38
    5·1 answer
  • Ben bought a new computer for $1200. Each yedt, the value of the computer decreases
    13·1 answer
  • An object travels along a horizontal straight path at a constant rate. The object travels 1/20 of the length of the path in 3/4
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!