Answer:
L = 10.64°
Step-by-step explanation:
From the given information:
In triangle JKL;
line k = 9.6 cm
line l = 2.7 cm; &
angle J = 43°
we are to find angle L = ???
We can use the sine rule to determine angle L:
i.e
Using Pythagoras rule to find j
i,e
j² = k² + l²
j² = 9.6²+ 2.7²
j² = 92.16 + 7.29
j² = 99.45
j = 9.97
∴
Answer:
m∠C=28°, m∠A=62°, AC=34.1 units
Step-by-step explanation:
Given In ΔABC, m∠B = 90°, , and AB = 16 units. we have to find m∠A, m∠C, and AC.
As, cos(C)={15}/{17}
⇒ angle C=cos^{-1}(\frac{15}{17})=28.07^{\circ}\sim28^{\circ}
By angle sum property of triangle,
m∠A+m∠B+m∠C=180°
⇒ m∠A+90°+28°=180°
⇒ m∠A=62°
Now, we have to find the length of AC
sin 28^{\circ}=\frac{AB}{AC}
⇒ AC=\frac{16}{sin 28^{\circ}}=34.1units
The length of AC is 34.1 units
Answer:
He pays $8.70
Step-by-step explanation:
You would do $67.86 divided by 7.8 lbs
Answer:
c) -x^3 + x^2 - 1
Step-by-step explanation:
Given: u (x) = x^5 - x^4 +x^2 and v(x) = -x^2
(u/v)(x) = u(x)/v(x)
Now plug in the given functions in the above formula, we get
= (x^5 - x^4 + x^2) / -x^2
We can factorize the numerator.
In x^5 - x^4 + x^2. the common factor is x^2, so we can take it out and write the remaining terms in the parenthesis.
= x^2 (x^3 - x^2 + 1) / - x^2
Now we gave x^2 both in the numerator and in the denominator, we can cancel it out.
(u/v)(x) = (x^3 - x^2 + 1) / -1
When we dividing the numerator by -1, we get
(u/v)(x) = -x^3 + x^2 - 1
Answer: c) -x^3 + x^2 - 1
Hope you will understand the concept.
Thank you.
Answer:
2 your welcome
Step-by-step explanation: