So first let’s combine like terms and add 4/9x and 1/5x together to get 29/45x =58. Next, multiply 58 by 45/29 to isolate x, so x=90
To enable the completion of the proof that line <em>l</em> is parallel to line <em>m</em>, a
diagram showing the lines and their common transversal is attached.
The completed two column proof is presented as follows;
Statement
Reason
1. ∠1 and ∠2 are supplementary angles
1. Given
2. m∠1 + m∠2 = 180°
2. <u>Definition of supplementary ∠s</u>
3. ∠1 and ∠3 are supplementary angles
3. Exterior sides in opposite rays
4. <u>m∠1 + m∠3 = 180° </u>
4. <u>Definition of supplementary ∠s</u>
5. m∠1 + m∠2 = m∠1 + m∠3
5. <u>Transitive property of equality</u>
6. <u>m∠2 = m∠3 </u>
6. <u>Subtraction property of equality</u>
7. l ║ m
7. <u>Converse of alternate interior </u>
<u>angles postulate</u>
Reasons:
- Reason for statement 2: Supplementary angles are defined as two angles that sum up to 180°
- Reason for statement 3: Two angles are supplementary if the exterior sides that form each angle are opposite rays (rays that are drawn out infinitely in opposite direction but have the same endpoint)
- Statement 4: Mathematical expression of the sum of ∠1 and ∠3; Reason for statement 4 is the definition of supplementary angles
- Reason for statement 5: Transitive property of equality describes the property that if a number <em>x</em> = <em>y</em>, and <em>z </em>= <em>y</em>, then <em>x</em> = <em>z</em>.
- Statement 6: Subtracting m∠1 from both sides of the equation in statement 5. gives; m∠1 + m∠2 - m∠1 = m∠1 + m∠3 - m∠1 ⇒ m∠2 = m∠3. Reason for statement 6 is the subtraction property of equality
- Reason for statement 7: The converse of the alternate interior angles postulate states that if the alternate interior angles formed between two lines and a common transversal are congruent, the two lines are parallel.
Learn more here:
brainly.com/question/25178453
Answer:
20
Step-by-step explanation:
170/8.5
Answer:
y = 2x + 4
Step-by-step explanation:
Two points on this line are (-2, 0) and (0, 4). Going from the first to the second, x increases by 2 (this is the 'run') and y increases by 4 ('rise').
Thus, the slope of this line is m = rise / run = 4/2 = 2
Using the slope-intercept formula, we get y = mx + b = 2x + b
Let x = -2 and y = 0 to find b: 0 = 2(-2) + b, so b = 4, and the desired equation is then:
y = 2x + 4