Answer:
This is the rate at which the radius of the balloon is changing when the volume is 300

Step-by-step explanation:
Let
be the radius and
the volume.
We know that the gas is escaping from a spherical balloon at the rate of
because the volume is decreasing, and we want to find 
The two variables are related by the equation

taking the derivative of the equation, we get

With the help of the formula for the volume of a sphere and the information given, we find
![V=\frac{4}{3}\pi r^3\\\\300=\frac{4}{3}\pi r^3\\\\r^3=\frac{225}{\pi }\\\\r=\sqrt[3]{\frac{225}{\pi }}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B4%7D%7B3%7D%5Cpi%20r%5E3%5C%5C%5C%5C300%3D%5Cfrac%7B4%7D%7B3%7D%5Cpi%20r%5E3%5C%5C%5C%5Cr%5E3%3D%5Cfrac%7B225%7D%7B%5Cpi%20%7D%5C%5C%5C%5Cr%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B225%7D%7B%5Cpi%20%7D%7D)
Substitute the values we know and solve for 
![\frac{dV}{dt}=4\pi r^2 \frac{dr}{dt}\\\\\frac{dr}{dt}=\frac{\frac{dV}{dt}}{4\pi r^2} \\\\\frac{dr}{dt}=-\frac{12}{4\pi (\sqrt[3]{\frac{225}{\pi }})^2} \\\\\frac{dr}{dt}=-\frac{3}{\pi \left(\sqrt[3]{\frac{225}{\pi }}\right)^2}\\\\\frac{dr}{dt}=-\frac{3}{\pi \frac{225^{\frac{2}{3}}}{\pi ^{\frac{2}{3}}}}\\\\\frac{dr}{dt}=-\frac{3}{225^{\frac{2}{3}}\pi ^{\frac{1}{3}}} \approx -0.05537 \:\frac{ft}{h}](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%3D4%5Cpi%20r%5E2%20%5Cfrac%7Bdr%7D%7Bdt%7D%5C%5C%5C%5C%5Cfrac%7Bdr%7D%7Bdt%7D%3D%5Cfrac%7B%5Cfrac%7BdV%7D%7Bdt%7D%7D%7B4%5Cpi%20r%5E2%7D%20%5C%5C%5C%5C%5Cfrac%7Bdr%7D%7Bdt%7D%3D-%5Cfrac%7B12%7D%7B4%5Cpi%20%28%5Csqrt%5B3%5D%7B%5Cfrac%7B225%7D%7B%5Cpi%20%7D%7D%29%5E2%7D%20%5C%5C%5C%5C%5Cfrac%7Bdr%7D%7Bdt%7D%3D-%5Cfrac%7B3%7D%7B%5Cpi%20%5Cleft%28%5Csqrt%5B3%5D%7B%5Cfrac%7B225%7D%7B%5Cpi%20%7D%7D%5Cright%29%5E2%7D%5C%5C%5C%5C%5Cfrac%7Bdr%7D%7Bdt%7D%3D-%5Cfrac%7B3%7D%7B%5Cpi%20%5Cfrac%7B225%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7B%5Cpi%20%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%5C%5C%5C%5C%5Cfrac%7Bdr%7D%7Bdt%7D%3D-%5Cfrac%7B3%7D%7B225%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5Cpi%20%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%20%5Capprox%20-0.05537%20%5C%3A%5Cfrac%7Bft%7D%7Bh%7D)
Answer:
The discriminant is the expression b2 - 4ac, which is defined for any quadratic equation ax2 + bx + c = 0. Based upon the sign of the expression, you can determine how many real number solutions the quadratic equation has. If you get a positive number, the quadratic will have two unique solutions
Step-by-step explanation:
hope it help
Answer:
34.491
Step-by-step explanation:
Calculator :>
The angles of a parallelogram add up to 360°
and the opposite angles are equal
so you make the equation: 150+150+5x+5x=360
you solve for x
10x=60
x=6