Answer:
77.47%
Step-by-step explanation:
We have to use Bayes Theorem in solving this problem.
This theorem's formula is:
P(A | B) = 
Where the " | " means <u><em>"given that"</em></u>.
For our problem, using bayes theorem, we can write:
P(Student has lice | positive ) = 
- P(Positive) = 0.1692 + 0.0492 = 0.2184
- P (Student has Lice & Positive ) = 0.1692
So P(Student has lice | Positive ) = 
Answer:
3y+4
Step-by-step explanation:
9y-6y=3y
Answer:
12x + 40y
Step-by-step explanation:
4(3x+10y)
multiply the outer number (4) with all the terms inside the parentheses
4 X 3x + 4 X 10y
12x + 40y
The volume of the cylinder is the amount of fruit juice it can contain.
The relationship between the volume and the surface area is:
![\mathbf{A = \pi (\sqrt[3]{\frac{V}{2\pi}})^2 + \frac{0.946}{(\sqrt[3]{\frac{V}{2\pi}})}}](https://tex.z-dn.net/?f=%5Cmathbf%7BA%20%3D%20%5Cpi%20%28%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%7D%29%5E2%20%2B%20%5Cfrac%7B0.946%7D%7B%28%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%7D%29%7D%7D)
The given parameter is:

The volume of a cylinder is calculated as:

Make h the subject

The surface area (A) of a cylinder is:

Substitute 


Differentiate

Set to 0

Rewrite as:

Multiply through by r^2

Solve for r
![\mathbf{r = \sqrt[3]{\frac{V}{2\pi}}}](https://tex.z-dn.net/?f=%5Cmathbf%7Br%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%7D%7D)

So, we have:
![\mathbf{A = \pi (\sqrt[3]{\frac{V}{2\pi}})^2 + \frac{0.946}{(\sqrt[3]{\frac{V}{2\pi}})}}](https://tex.z-dn.net/?f=%5Cmathbf%7BA%20%3D%20%5Cpi%20%28%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%7D%29%5E2%20%2B%20%5Cfrac%7B0.946%7D%7B%28%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%7D%29%7D%7D)
Hence, the relationship between the volume and the surface area is:
![\mathbf{A = \pi (\sqrt[3]{\frac{V}{2\pi}})^2 + \frac{0.946}{(\sqrt[3]{\frac{V}{2\pi}})}}](https://tex.z-dn.net/?f=%5Cmathbf%7BA%20%3D%20%5Cpi%20%28%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%7D%29%5E2%20%2B%20%5Cfrac%7B0.946%7D%7B%28%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%7D%29%7D%7D)
Read more about surface areas and volumes at:
brainly.com/question/3628550