Answer:
The total minutes he spend on his homework are 50 minutes.
Step-by-step explanation:
<em>It is given that Jordan spent 22% of his time for homework on maths.</em>
<em>It is also given that he spent 11 minutes of time on maths homework.</em>
The above two statements are equal.
Let the total time for homework be "x".
Thus, the equation can be written as,


Thus the total minutes he spend on his homework are 50 minutes.
<em><u>T</u></em><em><u>O</u></em><em><u> </u></em><em><u>F</u></em><em><u>I</u></em><em><u>N</u></em><em><u>D</u></em><em><u>:</u></em><em><u> </u></em> construct 3 equation starting with x=5?
<em><u>S</u></em><em><u>O</u></em><em><u>L</u></em><em><u>U</u></em><em><u>T</u></em><em><u>I</u></em><em><u>O</u></em><em><u>N</u></em><em><u>:</u></em><em><u> </u></em>
The equation is in the form of variable and constant equating.
Let the equation be x=5.
<em><u>T</u></em><em><u>O</u></em><em><u> </u></em><em><u>C</u></em><em><u>R</u></em><em><u>E</u></em><em><u>A</u></em><em><u>T</u></em><em><u>E</u></em><em><u> </u></em><em><u>A</u></em><em><u>N</u></em><em><u> </u></em><em><u>E</u></em><em><u>Q</u></em><em><u>U</u></em><em><u>A</u></em><em><u>T</u></em><em><u>I</u></em><em><u>O</u></em><em><u>N</u></em><em><u>,</u></em>
<em><u>F</u></em><em><u>I</u></em><em><u>R</u></em><em><u>S</u></em><em><u>T</u></em><em><u> </u></em><em><u>W</u></em><em><u>E</u></em><em><u> </u></em><em><u>A</u></em><em><u>D</u></em><em><u>D</u></em><em><u> </u></em><em><u>5</u></em><em><u> </u></em><em><u>B</u></em><em><u>O</u></em><em><u>T</u></em><em><u>H</u></em><em><u> </u></em><em><u>S</u></em><em><u>I</u></em><em><u>D</u></em><em><u>e</u></em><em><u>,</u></em>
x + 5=5+5
=x + 5=10
<em><u>S</u></em><em><u>E</u></em><em><u>C</u></em><em><u>O</u></em><em><u>N</u></em><em><u>D</u></em><em><u> </u></em><em><u>W</u></em><em><u>E</u></em><em><u> </u></em><em><u>S</u></em><em><u>U</u></em><em><u>B</u></em><em><u>R</u></em><em><u>A</u></em><em><u>C</u></em><em><u>T</u></em><em><u> </u></em><em><u>5</u></em><em><u> </u></em><em><u>B</u></em><em><u>O</u></em><em><u>T</u></em><em><u>H</u></em><em><u> </u></em><em><u>S</u></em><em><u>I</u></em><em><u>D</u></em><em><u>E</u></em><em><u>,</u></em>
x — 5=5—5
=x—5=0
<em><u>T</u></em><em><u>H</u></em><em><u>I</u></em><em><u>R</u></em><em><u>D</u></em><em><u> </u></em><em><u>W</u></em><em><u>E</u></em><em><u> </u></em><em><u>M</u></em><em><u>U</u></em><em><u>L</u></em><em><u>T</u></em><em><u>I</u></em><em><u>P</u></em><em><u>L</u></em><em><u>Y</u></em><em><u> </u></em><em><u>5</u></em><em><u> </u></em><em><u>B</u></em><em><u>O</u></em><em><u>T</u></em><em><u>H</u></em><em><u> </u></em><em><u>S</u></em><em><u>I</u></em><em><u>D</u></em><em><u>E</u></em><em><u>,</u></em>
5x=5×5
=5x=25
well u got the answer!
Answer:
There were 10 flies originally
Step-by-step explanation:
Since we have an exponential growth, we will be having a constant percentage of increase and we can set up the increase at any day using the following equation;
V = I(1+r)^d
where V is the number of flies on a particular day
I is the initial number of flies
r is the constant increase in percentage
and d is the number of days.
So we have for the second day;
60 = I(1+r)^2 ••••••(i)
For the fourth day, we have;
360 = I(1+r)^4 ••••••••(ii)
divide equation ii by i; we have;
360/60 = (1+r)^4/(1+r)^2
6 = (1+r)^2
(√6)^2 = (1+r)^2
1 + r = √6
r = √6 - 1
So we can substitute the value of r in any of the equations to get I which is the initial number of flies
Let’s use equation 1
60 = I(1 + r)^2
60 = I(1 + √6 -1)^2
60 = I(√6)^2
60 = 6I
I = 60/6
I = 10 flies
Answer:
188km
Hi there!!
I hope this answer helps.
Step-by-step explanation:
You can solve this with simple cross multiplication. (proportion)
Step-by-step explanation:
Answer:
28"
Step-by-step explanation:
the length of the other non-hypotenuse side =
√(53² - 45²) =√(2809-2025) =√784 = 28"