They both have the same absolute value. Their absolute value would be 3
1. -6 ≤ x < -1 . . . . conjunction
2. x ≤ 6 . . or . . 10 ≤ x . . . . disjunction
3. 7 ≤ x < 12 . . . . conjunction
4. x < -9 . . or . . -3 ≤ x . . . . disjunction
5. 2 ≤ x ≤ 5 . . . . conjunction
6. x ≤ 54 . . or . . 66 ≤ x . . . . disjunction
7. 39 < x ≤ 43 . . . . conjunction
_____
Your problem statement provided no letters.
Answer:
y= 5x+13
Step-by-step explanation:
<u>Slope- intercept form</u>
y= mx +b, where m is the gradient and b is the y-intercept.
Parallel lines have the same gradient.
y= 5x +4
Gradient of given line= 5
Thus, gradient of line= 5
Subst. m=5 into the equation.
y= 5x +b
To find the value of b, substitute a coordinate
When x= -2, y=3,
3= 5(-2) +b
3= -10 +b
b= 3 +10 <em>(</em><em>+</em><em>1</em><em>0</em><em> </em><em>on</em><em> </em><em>both</em><em> </em><em>sides</em><em>)</em>
b= 13
Thus, the equation of the line is y= 5x +13.
I: 2x+y=5
II:3x+2y=4
start by eliminating y
-2*I: -4x-2y=-10
II: 3x+2y=4
add both equations together
-2*I+II: -4x-2y+3x+2y=-10+4
-1x=-6
x=6
insert x=6 into I:
2*6+y=5
y=5-12
y=-7
so the solution is x=6, y=-7
Answer:
x=5 y=1
Step-by-step explanation: