Answer: -5100
<u>Step-by-step explanation:</u>
![\sum^4_1[100(-4)^{n-1}]\qquad \rightarrow \qquad a_1=100\ \text{and r = -4}\\\\\\S_n=\dfrac{a_1(1-r^n)}{1-r}\\\\\\\\S_4=\dfrac{100(1-(-4)^4)}{1-(-4)}\\\\\\.\quad=\dfrac{100(1-256)}{1+4}\\\\\\.\quad=\dfrac{100(-255)}{5}\\\\.\quad=20(-255)\\\\.\quad=-5100\\](https://tex.z-dn.net/?f=%5Csum%5E4_1%5B100%28-4%29%5E%7Bn-1%7D%5D%5Cqquad%20%5Crightarrow%20%5Cqquad%20a_1%3D100%5C%20%5Ctext%7Band%20r%20%3D%20-4%7D%5C%5C%5C%5C%5C%5CS_n%3D%5Cdfrac%7Ba_1%281-r%5En%29%7D%7B1-r%7D%5C%5C%5C%5C%5C%5C%5C%5CS_4%3D%5Cdfrac%7B100%281-%28-4%29%5E4%29%7D%7B1-%28-4%29%7D%5C%5C%5C%5C%5C%5C.%5Cquad%3D%5Cdfrac%7B100%281-256%29%7D%7B1%2B4%7D%5C%5C%5C%5C%5C%5C.%5Cquad%3D%5Cdfrac%7B100%28-255%29%7D%7B5%7D%5C%5C%5C%5C.%5Cquad%3D20%28-255%29%5C%5C%5C%5C.%5Cquad%3D-5100%5C%5C)
Given:
The graph of a function
.
To find:
The interval where
.
Solution:
From the given graph graph it is clear that, the function before x=0 and after x=3.6 lies above the x-axis. So,
for
and
.
The function between x=0 and x=3.6 lies below the x-axis. So,
for
.
Now,
For
, the graph of h(x) is above the x-axis. So,
.
For
, the graph of h(x) is below the x-axis. So,
.
For
, the graph of h(x) is below the x-axis. So,
.
Only for the interval
, we get
.
Therefore, the correct option is A.
Answer:x2 355b. Hhgguyuy
Step-by-step explanation: