Answer:
It means
also converges.
Step-by-step explanation:
The actual Series is::

The method we are going to use is comparison method:
According to comparison method, we have:

If series one converges, the second converges and if second diverges series, one diverges
Now Simplify the given series:
Taking"n^2"common from numerator and "n^6"from denominator.
![=\frac{n^2[7-\frac{4}{n}+\frac{3}{n^2}]}{n^6[\frac{12}{n^6}+2]} \\\\=\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{n^4[\frac{12}{n^6}+2]}](https://tex.z-dn.net/?f=%3D%5Cfrac%7Bn%5E2%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7Bn%5E6%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%20%5C%5C%5C%5C%3D%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7Bn%5E4%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D)
![\sum_{n=1}^{inf}a_n=\sum_{n=1}^{inf}\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\ \ \ \ \ \ \ \ \sum_{n=1}^{inf}b_n=\sum_{n=1}^{inf} \frac{1}{n^4}](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7Binf%7Da_n%3D%5Csum_%7Bn%3D1%7D%5E%7Binf%7D%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7B%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5Csum_%7Bn%3D1%7D%5E%7Binf%7Db_n%3D%5Csum_%7Bn%3D1%7D%5E%7Binf%7D%20%5Cfrac%7B1%7D%7Bn%5E4%7D)
Now:
![\sum_{n=1}^{inf}a_n=\sum_{n=1}^{inf}\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\\ \\\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\\=\frac{7-\frac{4}{inf}+\frac{3}{inf}}{\frac{12}{inf}+2}\\\\=\frac{7}{2}](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7Binf%7Da_n%3D%5Csum_%7Bn%3D1%7D%5E%7Binf%7D%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7B%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%5C%5C%20%5C%5C%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7B%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%5C%5C%3D%5Cfrac%7B7-%5Cfrac%7B4%7D%7Binf%7D%2B%5Cfrac%7B3%7D%7Binf%7D%7D%7B%5Cfrac%7B12%7D%7Binf%7D%2B2%7D%5C%5C%5C%5C%3D%5Cfrac%7B7%7D%7B2%7D)
So a_n is finite, so it converges.
Similarly b_n converges according to p-test.
P-test:
General form:

if p>1 then series converges. In oue case we have:

p=4 >1, so b_n also converges.
According to comparison test if both series converges, the final series also converges.
It means
also converges.
Answer:
Step-by-step explanation:
There are 20 ballots, 8 have drawn a car the rest are white.
Find the probability to extract at least one ballot with the drawing of a car if not replaced:
1. If a ballot is taken out:
8 have drawn a car: thus we have 8/20 = 2/5
2. If two ballots are removed, probability of extracting 1 ballot with drawing of car is 8/20 leaving 7 out of 19 remaining. The 7/19 is the probability of drawing out a second ballot with the drawing of a car. Thus we have
8/20 * 7/19 = 56/380 = 14/95
3. If three ballots are removed, probability of extracting 1 ballot with drawing of car is 8/20 leaving 7 out of 19 remaining. The 7/19 is the probability of drawing out a second ballot with the drawing of a car leaving 6 out of 18 remaining. The 6/18 is the probability of drawing out a third ballot with the drawing of a car.
8/20 * 7/19 * 6/18 = 42/855
Answer:
3x
Step-by-step explanation:
The answer is 61.92 all u do is 3 x 20.64
First I let's represent our data in the table and make a scatter plot ( i attached the image).

Points labeled
A are called data set.
Point labelled
B is called the outlier. The outlier is a point that does not fit well with the rest of our data set. Posible
reason for point B is that someone is super smart and they don't need to spend a lot of time studying to achieve good results.
PartBWe can see from the graph that the number of hours spent on social media and test scores are negatively correlated. See a scatter plot, I added the trend line.
In other words, the more hours you spend on social media the lower your test scores should be.