Answer:
120
240
Step-by-step explanation:
We call the length of first part x
Length of second part = y
In the first scenario, it took the tortoise 110 sec to walk the first part and crawl the second.
So,
We have this equation,
x/4 + y/3 = 110
We take the LCM
(3x + 4y)/12 = 110
When we cross multiply
3x + 4y = 110x12
3x + 4y = 1320 ----- equation 1
For scenario 2
x/3 + y/4 = 100
When we take the LCM
(4x + 3y)/12 = 100
We cross multiply
4x + 3y = 100x12
4x + 3y = 1200 ------ equation 2
We now have two equations and we will solve for x and y using simultaneous linear equation.
3x + 4y = 1320 ----- 1
4x + 3y = 1200 ----- 2
We subtract equation 2 from 1 to get
- x + y = 120
We make y subject
y = x + 120 ----- 3
We put the value of y in equation 3 into equation 1
3x + 4(x + 120) = 1320
3x + 4x + 480 = 1320
7x + 480 = 1320
7x = 1320-480
7x = 840
We divide through by 7
x = 840/7
x = 120
We put value of x in equation 3
y = x + 120
y = 120 + 120
y = 240
120 and 240 are the lengths of the 2 parts of the journey.
Thanks
Answer:
-10
Step-by-step explanation:
-7+(-3)= -7-3
= -(7+3)
= -10
Side note: Do you not have a caculator?
The bus driver arrives in Oban at 11:20
Answer:
Binomial distribution requires all of the following to be satisfied:
1. size of experiment (N=27) is known.
2. each trial of experiment is Bernoulli trial (i.e. either fail or pass)
3. probability (p=0.14) remains constant through trials.
4. trials are independent, and random.
Binomial distribution can be used as a close approximation, with the usual assumption that a sample of 27 in thousands of stock is representative of the population., and is given by the probability of x successes (defective).
P(x)=C(N,x)*p^x*(1-p)^(n-x)
where N=27, p=0.14, and C(N,x) is the number of combinations of x items out of N.
So we need the probability of <em>at most one defective</em>, which is
P(0)+P(1)
= C(27,0)*0.14^0*(0.86)^(27) + C(27,1)*0.14^1*(0.86^26)
=1*1*0.0170 + 27*0.14*0.0198
=0.0170+0.0749
=0.0919