It's the same as x^211 = 8^152
Simplify that equation. Find the 211th root of (8^152), and that is what x equals. If I remember logs correctly...
Answer:
<em>P=0.0000037</em>
<em>P=0.00037%</em>
Step-by-step explanation:
<u>Probability</u>
A standard deck of 52 playing cards has 4 aces.
The probability of getting one of those aces is

Now we got an ace, there are 3 more aces out of 51 cards.
The probability of getting one of those aces is

Now we have 2 aces out of 50 cards.
The probability of getting one of those aces is

Finally, the probability of getting the remaining ace out of the 49 cards is:

The probability of getting the four consecutive aces is the product of the above-calculated probabilities:


P=0.0000037
P=0.00037%
Answer:
18 qts
Step-by-step explanation:
Since 1 gallon=4qts, you would multiply the gallons by 4 to reach your answer. 4.5 gallons=18qts
Answer:
-2
Step-by-step explanation:
they are parallel so same slope but different y intercepts
Answer:
2 hours: 3968 <u>[I don't understand the $ sign in the answer box]</u>
At midnight: 12137
Step-by-step explanation:
The bacteria are increasing by 15% every hour. So for every hour we will have what we started with, plus 15% more.
The "15% more" can be represented mathematically with (1 + 0.15) or 1.15. Let's call this the "growth factor" and assign it the variable b. b is (1 + percent increase).
Since this per hour, in 1 hour we'll have (3000)*(1.15) = 3450
At the end of the second hour we're increased by 15% again:
(3450)*(1.15) = 3968.
Each additional hour add another (1.15) factor, If we assign a to be the starting population, this can be represented by:
P = a(1.15)^t for this sample that increase 15% per hour. t is time, in hours.
If a represents the growth factor, and P is the total population, the general expression is
P = ab^t
Using this for a = 3000 and b = 1.15, we can find the total population at midnight after starting at 2PM. That is a 10 hour period, so t = 10
P = (3000)*(1.15)^10
P = 12137