Answer:
Area_circle = pi*(24/5)*(360/48)=36pi = 113.097
Step-by-step explanation:
(cos 10° − sin 10°) / (cos 10° + sin 10°)
Rewrite 10° as 45° − 35°.
(cos(45° − 35°) − sin(45° − 35°)) / (cos(45° − 35°) + sin(45° − 35°))
Use angle difference formulas.
(cos 45° cos 35° + sin 45° sin 35° − sin 45° cos 35° + cos 45° sin 35°) / (cos 45° cos 35° + sin 45° sin 35° + sin 45° cos 35° − cos 45° sin 35°)
sin 45° = cos 45°, so dividing:
(cos 35° + sin 35° − cos 35° + sin 35°) / (cos 35° + sin 35° + cos 35° − sin 35°)
Combining like terms:
(2 sin 35°) / (2 cos 35°)
Dividing:
tan 35°
Step-by-step explanation:
Given 
To get g(x), we will have to integrate g'(x)

If g(1) = 0, this means at x = 1, g(x) = 0
0 = -1⁻¹ + C
C= 1
Substitute C = 1 into the function
g(x) = -x⁻¹ + 1
If g(2) = 0, this means at x = 2, g(x) = 0
0 = -2⁻¹ + C
C= 2⁻¹
C = 1/2
Substitute C = 2 into the function
g(x) = -x⁻¹ + 1/2
Answer:
D
Step-by-step explanation:
5n=85
n=17
Answer:
-1/2
Step-by-step explanation:
The cosine is equal to the x coordinate of the point where the terminal side of the angle intersects the unit circle.