![14\sqrt[]{6}i](https://tex.z-dn.net/?f=14%5Csqrt%5B%5D%7B6%7Di)
1) Let's rewrite it into the z=a +bi form.
2) So we can write out the following noticing that i² =-1 as well as √-1=i
![\begin{gathered} \sqrt[]{-1176}=\sqrt[]{-1}\cdot\sqrt[]{1176} \\ Factoring \\ \sqrt[]{-1}\cdot14\sqrt[]{6} \\ i\cdot14\sqrt[]{6} \\ 14\sqrt[]{6}i \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Csqrt%5B%5D%7B-1176%7D%3D%5Csqrt%5B%5D%7B-1%7D%5Ccdot%5Csqrt%5B%5D%7B1176%7D%20%5C%5C%20Factoring%20%5C%5C%20%5Csqrt%5B%5D%7B-1%7D%5Ccdot14%5Csqrt%5B%5D%7B6%7D%20%5C%5C%20i%5Ccdot14%5Csqrt%5B%5D%7B6%7D%20%5C%5C%2014%5Csqrt%5B%5D%7B6%7Di%20%5Cend%7Bgathered%7D)
Note that in this number the real part "a" is equal to 0.
Here you go hope this helps
Answer:
1. m=2x b=1 2. m=5/8x b= -1 3. m=7/8x b= -3/4 4. m=3/4x b=4
Step-by-step explanation:
<u>Answer</u>
1.156 × 10⁰
<u>Explanation</u>
In indexes,
a⁰ = 1 ⇒ ㏒aⁿ = ㏒1
n㏒a = ㏒ 1
n = ㏒1/㏒a
but ㏒1 = 0
n = 0/㏒a
= 0
∴ So to represent 1.156 to the power of 10 it will be;
1.156 = 1.156 × 10⁰
Yes the relation is a function. The x values do not repeat.