Answer:
The probability that a randomly selected call time will be less than 30 seconds is 0.7443.
Step-by-step explanation:
We are given that the caller times at a customer service center has an exponential distribution with an average of 22 seconds.
Let X = caller times at a customer service center
The probability distribution (pdf) of the exponential distribution is given by;

Here,
= exponential parameter
Now, the mean of the exponential distribution is given by;
Mean =
So,
⇒
SO, X ~ Exp(
)
To find the given probability we will use cumulative distribution function (cdf) of the exponential distribution, i.e;
; x > 0
Now, the probability that a randomly selected call time will be less than 30 seconds is given by = P(X < 30 seconds)
P(X < 30) =
= 1 - 0.2557
= 0.7443
Divide the sale price by the original price:
56 / 89 = 0.7
Multiply by 100:
0.7 x 100 = 70%
The sale price is 70% of the original price, so the discount would be 30% (100-70= 30)
Answer:
ghghjhjghjghghjghghj
Step-by-step explanation:
jghjghjghjghj