Answer:
≈
Step-by-step explanation:
You need to find the value of the variable "x".
To solve for "x" you need to apply the following property of logarithms:

Apply logarithm on both sides of the equation:

Now, applying the property mentioned before, you can rewrite the equation in this form:

Finally, you can apply the Division property of equality, which states that:

Therefore, you need to divide both sides of the equation by
. Finally, you get:

≈
Answer:
125/88
Step-by-step explanation:
have a nice day
Answer:
C. 8
Step-by-step explanation:
![\because \: {s}^{3} = 64 \\ s = \sqrt[3]{64} \\ s = 4 \\ side \: of \: cube = 4 \: units \\ when \: side \: is \: halved \\ new \: side \: length = \frac{4}{2} = 2 \\ \: new \: volume = {2}^{3} = 8 \: cubic \: units](https://tex.z-dn.net/?f=%20%5Cbecause%20%5C%3A%20%20%7Bs%7D%5E%7B3%7D%20%20%3D%2064%20%5C%5C%20s%20%3D%20%20%5Csqrt%5B3%5D%7B64%7D%20%20%5C%5C%20s%20%3D%204%20%5C%5C%20side%20%5C%3A%20of%20%5C%3A%20cube%20%3D%204%20%5C%3A%20units%20%5C%5C%20when%20%5C%3A%20side%20%5C%3A%20is%20%5C%3A%20halved%20%5C%5C%20new%20%5C%3A%20side%20%5C%3A%20length%20%3D%20%20%5Cfrac%7B4%7D%7B2%7D%20%20%3D%202%20%5C%5C%20%20%5C%3A%20new%20%5C%3A%20volume%20%3D%20%20%7B2%7D%5E%7B3%7D%20%20%3D%208%20%5C%3A%20cubic%20%5C%3A%20units)
Answer:
The 95% confidence interval for the true proportion of university students who use laptop in class to take notes is (0.2839, 0.4161).
Step-by-step explanation:
The (1 - <em>α</em>)% confidence interval for population proportion <em>P</em> is:

The information provided is:
<em>x</em> = number of students who responded as"yes" = 70
<em>n</em> = sample size = 200
Confidence level = 95%
The formula to compute the sample proportion is:

The R codes for the construction of the 95% confidence interval is:
> x=70
> n=200
> p=x/n
> p
[1] 0.35
> s=sqrt((p*(1-p))/n)
> s
[1] 0.03372684
> E=qnorm(0.975)*s
> lower=p-E
> upper=p+E
> lower
[1] 0.2838966
> upper
[1] 0.4161034
Thus, the 95% confidence interval for the true proportion of university students who use laptop in class to take notes is (0.2839, 0.4161).