Answer:
-2x³ + x² - 3x - 15
Step-by-step explanation:
Simply combine like terms together:
-5x² - 3x - 7 - 2x³ + 6x² - 8
-2x³ + (-5x² + 6x²) - 3x + (-7 - 8)
-2x³ + x² - 3x + (-7 - 8)
-2x³ + x² - 3x - 15
Answer:
< 20
Step-by-step explanation:
hope this help idrk how to explain this one lol
Rewrite the equations of the given boundary lines:
<em>y</em> = -<em>x</em> + 1 ==> <em>x</em> + <em>y</em> = 1
<em>y</em> = -<em>x</em> + 4 ==> <em>x</em> + <em>y</em> = 4
<em>y</em> = 2<em>x</em> + 2 ==> -2<em>x</em> + <em>y</em> = 2
<em>y</em> = 2<em>x</em> + 5 ==> -2<em>x</em> + <em>y</em> = 5
This tells us the parallelogram in the <em>x</em>-<em>y</em> plane corresponds to the rectangle in the <em>u</em>-<em>v</em> plane with 1 ≤ <em>u</em> ≤ 4 and 2 ≤ <em>v</em> ≤ 5.
Compute the Jacobian determinant for this change of coordinates:
![J=\begin{bmatrix}\frac{\partial u}{\partial x}&\frac{\partial u}{\partial y}\\\frac{\partial v}{\partial x}&\frac{\partial v}{\partial y}\end{bmatrix}=\begin{bmatrix}1&1\\-2&1\end{bmatrix}\implies|\det J|=3](https://tex.z-dn.net/?f=J%3D%5Cbegin%7Bbmatrix%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%26%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%5C%5C%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D%26%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%5Cend%7Bbmatrix%7D%3D%5Cbegin%7Bbmatrix%7D1%261%5C%5C-2%261%5Cend%7Bbmatrix%7D%5Cimplies%7C%5Cdet%20J%7C%3D3)
Rewrite the integrand:
![-3x+4y=-3\cdot\dfrac{u-v}3+4\cdot\dfrac{2u+v}3=\dfrac{5u+7v}3](https://tex.z-dn.net/?f=-3x%2B4y%3D-3%5Ccdot%5Cdfrac%7Bu-v%7D3%2B4%5Ccdot%5Cdfrac%7B2u%2Bv%7D3%3D%5Cdfrac%7B5u%2B7v%7D3)
The integral is then
![\displaystyle\iint_R(-3x+4y)\,\mathrm dx\,\mathrm dy=3\iint_{R'}\frac{5u+7v}3\,\mathrm du\,\mathrm dv=\int_2^5\int_1^45u+7v\,\mathrm du\,\mathrm dv=\boxed{333}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ciint_R%28-3x%2B4y%29%5C%2C%5Cmathrm%20dx%5C%2C%5Cmathrm%20dy%3D3%5Ciint_%7BR%27%7D%5Cfrac%7B5u%2B7v%7D3%5C%2C%5Cmathrm%20du%5C%2C%5Cmathrm%20dv%3D%5Cint_2%5E5%5Cint_1%5E45u%2B7v%5C%2C%5Cmathrm%20du%5C%2C%5Cmathrm%20dv%3D%5Cboxed%7B333%7D)
Answer:
corresponding angles postulate
Step-by-step explanation:
just took the test ;)