1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Amiraneli [1.4K]
2 years ago
6

(d). Use an appropriate technique to find the derivative of the following functions:

Mathematics
1 answer:
natima [27]2 years ago
3 0

(i) I would first suggest writing this function as a product of the functions,

\displaystyle y = fgh = (4+3x^2)^{1/2} (x^2+1)^{-1/3} \pi^x

then apply the product rule. Hopefully it's clear which function each of f, g, and h refer to.

We then have, using the power and chain rules,

\displaystyle \frac{df}{dx} = \frac12 (4+3x^2)^{-1/2} \cdot 6x = \frac{3x}{(4+3x^2)^{1/2}}

\displaystyle \frac{dg}{dx} = -\frac13 (x^2+1)^{-4/3} \cdot 2x = -\frac{2x}{3(x^2+1)^{4/3}}

For the third function, we first rewrite in terms of the logarithmic and the exponential functions,

h = \pi^x = e^{\ln(\pi^x)} = e^{\ln(\pi)x}

Then by the chain rule,

\displaystyle \frac{dh}{dx} = e^{\ln(\pi)x} \cdot \ln(\pi) = \ln(\pi) \pi^x

By the product rule, we have

\displaystyle \frac{dy}{dx} = \frac{df}{dx}gh + f\frac{dg}{dx}h + fg\frac{dh}{dx}

\displaystyle \frac{dy}{dx} = \frac{3x}{(4+3x^2)^{1/2}} (x^2+1)^{-1/3} \pi^x - (4+3x^2)^{1/2} \frac{2x}{3(x^2+1)^{4/3}} \pi^x + (4+3x^2)^{1/2} (x^2+1)^{-1/3} \ln(\pi) \pi^x

\displaystyle \frac{dy}{dx} = \frac{3x}{(4+3x^2)^{1/2}} \frac{1}{(x^2+1)^{1/3}} \pi^x - (4+3x^2)^{1/2} \frac{2x}{3(x^2+1)^{4/3}} \pi^x + (4+3x^2)^{1/2} \frac{1}{ (x^2+1)^{1/3}} \ln(\pi) \pi^x

\displaystyle \frac{dy}{dx} = \boxed{\frac{\pi^x}{(4+3x^2)^{1/2} (x^2+1)^{1/3}} \left( 3x - \frac{2x(4+3x^2)}{3(x^2+1)} + (4+3x^2)\ln(\pi)\right)}

You could simplify this further if you like.

In Mathematica, you can confirm this by running

D[(4+3x^2)^(1/2) (x^2+1)^(-1/3) Pi^x, x]

The immediate result likely won't match up with what we found earlier, so you could try getting a result that more closely resembles it by following up with Simplify or FullSimplify, as in

FullSimplify[%]

(% refers to the last output)

If it still doesn't match, you can try running

Reduce[<our result> == %, {}]

and if our answer is indeed correct, this will return True. (I don't have access to M at the moment, so I can't check for myself.)

(ii) Given

\displaystyle \frac{xy^3}{1+\sec(y)} = e^{xy}

differentiating both sides with respect to x by the quotient and chain rules, taking y = y(x), gives

\displaystyle \frac{(1+\sec(y))\left(y^3+3xy^2 \frac{dy}{dx}\right) - xy^3\sec(y)\tan(y) \frac{dy}{dx}}{(1+\sec(y))^2} = e^{xy} \left(y + x\frac{dy}{dx}\right)

\displaystyle \frac{y^3(1+\sec(y)) + 3xy^2(1+\sec(y)) \frac{dy}{dx} - xy^3\sec(y)\tan(y) \frac{dy}{dx}}{(1+\sec(y))^2} = ye^{xy} + xe^{xy}\frac{dy}{dx}

\displaystyle \frac{y^3}{1+\sec(y)} + \frac{3xy^2}{1+\sec(y)} \frac{dy}{dx} - \frac{xy^3\sec(y)\tan(y)}{(1+\sec(y))^2} \frac{dy}{dx} = ye^{xy} + xe^{xy}\frac{dy}{dx}

\displaystyle \left(\frac{3xy^2}{1+\sec(y)} - \frac{xy^3\sec(y)\tan(y)}{(1+\sec(y))^2} - xe^{xy}\right) \frac{dy}{dx}= ye^{xy} - \frac{y^3}{1+\sec(y)}

\displaystyle \frac{dy}{dx}= \frac{ye^{xy} - \frac{y^3}{1+\sec(y)}}{\frac{3xy^2}{1+\sec(y)} - \frac{xy^3\sec(y)\tan(y)}{(1+\sec(y))^2} - xe^{xy}}

which could be simplified further if you wish.

In M, off the top of my head I would suggest verifying this solution by

Solve[D[x*y[x]^3/(1 + Sec[y[x]]) == E^(x*y[x]), x], y'[x]]

but I'm not entirely sure that will work. If you're using version 12 or older (you can check by running $Version), you can use a ResourceFunction,

ResourceFunction["ImplicitD"][<our equation>, x]

but I'm not completely confident that I have the right syntax, so you might want to consult the documentation.

You might be interested in
I dont get this please help i will mark the best
Mumz [18]

/Answer:

the verry last one

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Calculate the total interior angle of an octagon​
slava [35]
<h2>1080°</h2><h2></h2>

basically, the sum of all of the internal angles will be 1080

when you add all interior angles in an octagon you should get 1080

hope that helps !

8 0
3 years ago
Read 2 more answers
The lengths of two sides of a triangle are 15 inches each.the third side measures 10 inches what type of triangle is this?
Degger [83]
Since only 2 sides are equal (not 3), this is an "isosceles triangle."
6 0
3 years ago
Help ASAP! I’m confused. Thanks!!
KATRIN_1 [288]

Answer:

B

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Help due today asap Plaese help
fomenos

Answer:

A

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • A company manufactures 2,000 units of its flagship product in a day. The quality control department takes a random sample of 40
    12·2 answers
  • (04.02 MC) If f(x) = 2x2 − 10, find f(5).
    13·1 answer
  • Steven wakes up for school at 6:30 in the morning. if school starts at 8:00 am, how long does he have from the time he wakes up
    12·1 answer
  • Bridge B is 165 feet shorter than Bridge A.The combined length of the two bridges 8421 feet. Find the length of each bridge
    8·1 answer
  • You are planning on using circles to compare the populations of California 37,691,000, Texas 25,675,000, and New York 19,465,000
    7·1 answer
  • the expression 15n + 12n + 100 rersents the total cost in dollars for skis, boots and a lesson for n skiers. simplify the expres
    6·2 answers
  • HURRY PLEASE<br>What is the end behavior of the polynomial function?
    6·1 answer
  • Help, I have to turn this in soon
    9·2 answers
  • Find the measure of each angle indicated
    8·2 answers
  • Convert 14.7 gallons to cm. Explanation needed as well please
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!