Answer:
3 twelths is your answer :)
Answer: Think about graduating. Think about never having to take the courses again. You're almost at the finish line! It'll be worth it. You've worked hard all year for this. You can do it!
Study tips: I would recommend Quizlet! They have a section that generates study games. It's a lot more fun than normal studying. It's also a good idea to make a goal for yourself. Try to make a challenge of achieving a certain score! By the time you accomplish said score, you'll find that you've learned a lot. Another tip is to make sure you take breaks. If you work too long without giving yourself a break, it will become harder to focus and your brain will become tired. Just don't get too distracted! set yourself an alarm during break times to help you stay on task. If you become frustrated with a certain subject or task, take a break from that task. Use this time as an opportunity to work on another subject. You can begin working on the first subject again once you feel refreshed. A lot of this may sound redundant, but hopefully it will help at least a little bit. Good luck!
I am setting the week hourly rate to x, and the weekend to y. Here is how the equation is set up:
13x + 14y = $250.90
15x + 8y = $204.70
This is a system of equations, and we can solve it by multiplying the top equation by 4, and the bottom equation by -7. Now it equals:
52x + 56y = $1003.60
-105x - 56y = -$1432.90
Now we add these two equations together to get:
-53x = -$429.30 --> 53x = $429.30 --> (divide both sides by 53) x = 8.10. This is how much she makes per hour on a week day.
Now we can plug in our answer for x to find y. I am going to use the first equation, but you could use either.
$105.30 + 14y = $250.90. Subtract $105.30 from both sides --> 14y = $145.60 divide by 14 --> y = $10.40
Now we know that she makes $8.10 per hour on the week days, and $10.40 per hour on the weekends. Subtracting 8.1 from 10.4, we figure out that she makes $2.30 more per hour on the weekends than week days.
Answer:
16.7% of GMAT scores are 647 or higher
Step-by-step explanation:
The Empirical Rule states that 68% of the values are within 1 standard deviation of the mean(34% above, 34% below). It also considers that 50% of the values are above the mean and 50% are below the mean.
In this problem, we have that the mean is 547 and that the standard deviation is 100.
a. What percentage of GMAT scores are 647 or higher?
647 is 1 standard deviation above the mean.
So, 50% of the values are below the mean. Those scores are lower than 647.
Also, there is the 34% of the values that are above the mean and are lower than 647.
So, there is a 50% + 34% = 84% percentage of GMAT scores that are 647 or lower.
The sum of the probabilities must be 100
So, the percentage of GMAT scores that are 647 or higher is 100% - 84% = 16%.
Answer:
25.4 or 25 times
Step-by-step explanation:
137.25-10.25=127
127/5=25.4