1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nirvana33 [79]
3 years ago
12

2x^{2} +4x+1=0 Solve for x.

Mathematics
1 answer:
Viefleur [7K]3 years ago
7 0
2x^2 + 4x + 1 = 0

2x^2 + 4x + 1 - 1 = 0 - 1

2x^2 + 4x = -1

X(2x + 4) = -1

X = -1.

2x + 4 = -1
2x + 4 - 4 = -1 - 4
2x = -5
2x/2 = -5/2
X = -5/2.

I believe these are the solutions. If not you can use the quadratic formula to solve for the roots, solutions.
You might be interested in
For brainiest:):):):):):):)
andrew-mc [135]

Answer:

15 = 0.025

16= 3 years

Step-by-step explanation:

15.

I=prt

15= (200)(r)(3)

200(3) = 600r

15 divided by 600r = 40 (0.025)

------------------------------------------------------

16.

I=prt

t= \frac{I}{Ixp} \\t= \frac{90}{0.05x600} \\t= 3

t= 3 years

5 0
3 years ago
What is 3a+2b-5a+b simplified?
marishachu [46]

Answer:

-a + b

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
4. Find the surface area. Help me please
pogonyaev

Step-by-step explanation:

2πrh+2πr²=surface area

2π(3)(6)+2π(3²)

36π+18π

54π

8 0
3 years ago
A right circular cone is undergoing a transformation in such a way that the radius of the cone is increasing at a rate of 1/2 in
Ivenika [448]

Answer:

The volume is decreasing at the rate of 1.396 cubic inches per minute

Step-by-step explanation:

Given

Shape: Cone

\frac{dr}{dt} =\frac{1}{2} --- rate of the radius

\frac{dh}{dt} =-\frac{1}{3} --- rate of the height

r = 2

h = \frac{1}{3}

Required

Determine the rate of change of the cone volume

The volume of a cone is:

V = \frac{\pi}{3}r^2h

Differentiate with respect to time (t)

\frac{dV}{dt} = \frac{\pi}{3}(2rh \frac{dr}{dt} + r^2 \frac{dh}{dt})

Substitute values for the known variables

\frac{dV}{dt} = \frac{\pi}{3}(2*2*\frac{1}{3}* \frac{1}{2} - 2^2 *\frac{1}{3})

\frac{dV}{dt} = \frac{\pi}{3}(\frac{4}{3}* \frac{1}{2} - \frac{4}{3})

\frac{dV}{dt} = \frac{\pi}{3}(\frac{4}{3}(\frac{1}{2} - 1))

\frac{dV}{dt} = \frac{\pi}{3}(\frac{4}{3}*- 1)

\frac{dV}{dt} = -\frac{\pi}{3}*\frac{4}{3}

\frac{dV}{dt} = -\frac{22}{7*3}*\frac{4}{3}

\frac{dV}{dt} = -\frac{22}{21}*\frac{4}{3}

\frac{dV}{dt} = -\frac{88}{63}

\frac{dV}{dt} =-1.396in^3/min

The volume is decreasing at the rate of 1.396 cubic inches per minute

3 0
3 years ago
Given limit f(x) = 4 as x approaches 0. What is limit 1/4[f(x)]^4 as x approaches 0?
stepladder [879]

Answer:

\displaystyle 64

General Formulas and Concepts:

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Limit Rule [Variable Direct Substitution Exponential]:                                         \displaystyle \lim_{x \to c} x^n = c^n

Limit Property [Multiplied Constant]:                                                                     \displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle  \lim_{x \to 0} f(x) = 4

<u>Step 2: Solve</u>

  1. Rewrite [Limit Property - Multiplied Constant]:                                           \displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = \frac{1}{4} \lim_{x \to 0} [f(x)]^4
  2. Evaluate limit [Limit Rule - Variable Direct Substitution Exponential]:       \displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = \frac{1}{4}(4^4)
  3. Simplify:                                                                                                         \displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = 64

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

Book: College Calculus 10e

3 0
3 years ago
Other questions:
  • Donations to an annual fundraiser are 15% greater than last year. Last year, donations were greater 10% than the year before. Th
    10·1 answer
  • 40 POINTS
    15·1 answer
  • Each time Kendra walks Mr. Karl's dog, he gives her $3. Kendra walks the dog for 30 minutes. If she walks the dog on Monday, Tue
    14·2 answers
  • Equation equivalent to r=1+2sin Ø
    12·1 answer
  • How to simplify : <br><br> √(1+√(1-x^2 )) - √(1-√(1-x^2 ))
    5·1 answer
  • Factor each expression: 5a-25
    11·2 answers
  • In the group of hundred students68 likes football 60 likes volleyball how many likes only football
    11·2 answers
  • A baseball is thrown straight upwards from the ground and undergoes a free fall motion as it rises towards its highest point. Wh
    8·1 answer
  • Find x in each triangle
    7·2 answers
  • What is the correct answer?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!