Answer:
option 4.
16 square units
Step-by-step explanation:
as we do not have the measures of the sides, but if the points of the vertices with Pythagoras we can calculate the sides.
P = (2 , 4)
S = (4 , 2)
we have to subtract the values of p from s
PS = (4 - 2 , 2 - 4)
PS = (2 , -2)
by pitagoras h ^ 2 = c1 ^ 2 + c2 ^ 2
h: hypotenuse
c1: leg 1
c2: leg 2
PS^2 = 2^2 + -2^2
PS = √ 4 + 4
PS = √8
PS = 2√2
S = (4 , 2)
R = (8 , 6)
SR = (8-4 , 6-2)
SR = (4 , 4)
by pitagoras h ^ 2 = c1 ^ 2 + c2 ^ 2
h: hypotenuse
c1: leg 1
c2: leg 2
SR^2 = 4^2 + 4^2
SR = √ (16 + 16)
SR = √32
SR = 4√2
having the values of 2 of its sides we multiply them and obtain their area
PS * RS = Area
2√2 * 4√2 =
16
12 is the greatest number because it is the highest common factor between the three numbers.
Answer:
The answer is 18. bcoz 8+5+5=18 number of balls, Am back from vacation
2/5 will be shaded in the original how I got it s that you make a rectangle and make fifths inside and shade in 3/5 of that and see what matches up on the top.
Hopes this helps:
Answer: 7/25
1. Cancel 8.
1/25 • 7
2. Simplify.
7/25